Python class
Graph
Graph
class max.graph.Graph(name, forward=None, input_types=(), path=None, *args, custom_extensions=[], context=None, kernel_library=None, module=None, **kwargs)
Represents a single MAX graph.
A Graph is a callable routine in MAX Engine. Like functions, graphs have a name and signature. Unlike a function, which follows an imperative programming model, a Graph follows a dataflow programming model, using lazily-executed, parallel operations instead of sequential instructions.
When you instantiate a graph, you must specify the input shapes as one or
more TensorType
values. Then, build a sequence of ops and set the
graph output with output()
. For example:
from dataclasses import dataclass
import numpy as np
from max.dtype import DType
from max.graph import Graph, TensorType, TensorValue, ops
@dataclass
class Linear:
weight: np.ndarray
bias: np.ndarray
def __call__(self, x: TensorValue) -> TensorValue:
weight_tensor = ops.constant(self.weight, dtype=DType.float32, device=DeviceRef.CPU())
bias_tensor = ops.constant(self.bias, dtype=DType.float32, device=DeviceRef.CPU())
return ops.matmul(x, weight_tensor) + bias_tensor
linear_graph = Graph(
"linear",
Linear(np.ones((2, 2)), np.ones((2,))),
input_types=[TensorType(DType.float32, (2,))]
)
from dataclasses import dataclass
import numpy as np
from max.dtype import DType
from max.graph import Graph, TensorType, TensorValue, ops
@dataclass
class Linear:
weight: np.ndarray
bias: np.ndarray
def __call__(self, x: TensorValue) -> TensorValue:
weight_tensor = ops.constant(self.weight, dtype=DType.float32, device=DeviceRef.CPU())
bias_tensor = ops.constant(self.bias, dtype=DType.float32, device=DeviceRef.CPU())
return ops.matmul(x, weight_tensor) + bias_tensor
linear_graph = Graph(
"linear",
Linear(np.ones((2, 2)), np.ones((2,))),
input_types=[TensorType(DType.float32, (2,))]
)
You can’t call a Graph directly from Python. You must compile it and execute it with MAX Engine. For more detail, see the tutorial about how to build a graph with MAX Graph.
When creating a graph, a global sequence of chains is initialized and stored in Graph._current_chain. Every side-effecting op, e.g. buffer_load, store_buffer, load_slice_buffer, store_slice_buffer, will use the current chain to perform the op and and update Graph._current_chain with a new chain. Currently, the input/output chains for mutable ops can be used at most once. The goal of this design choice is to prevent data races.
-
Parameters:
-
- name (
str
) - forward (
Optional
[
Callable
]
) - input_types (
Iterable
[
Type
]
) - path (
Optional
[
Path
]
) - custom_extensions (
list
[
Path
]
) - context (
Optional
[
mlir.Context
]
) - kernel_library (
Optional
[
KernelLibrary
]
) - module (
Optional
[
mlir.Module
]
)
- name (
add_subgraph()
add_subgraph(name, forward=None, input_types=(), path=None, custom_extensions=[])
add_weight()
add_weight(weight, force_initial_weight_on_host=True)
Adds a weight to the graph.
If the weight is in the graph already, return the existing value.
-
Parameters:
-
Returns:
-
A
TensorValue
that contains this weight. -
Raises:
-
ValueError – If a weight with the same name already exists in the graph.
-
Return type:
current
current
inputs
The input values of the graph.
kernel_libraries_paths
Returns the list of extra kernel libraries paths for the custom ops.
local_weights_and_chain()
local_weights_and_chain()
output()
output(*outputs)
Sets the output nodes of the Graph
.
-
Parameters:
-
outputs (
Value
) -
Return type:
-
None
output_types
View of the types of the graph output terminator.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!