Tensor
#include "max/c/tensor.h"
#include "max/c/tensor.h"
Functions
M_newTensorSpec()
M_TensorSpec *M_newTensorSpec(const int64_t *shape, int64_t rankSize, M_Dtype dtype, const char *tensorName)
Creates a tensor specification.
You need this in order to set the input tensors with M_borrowTensorInto()
.
When storing tensor data in memory, we always use a diminishing stride size. That is, earlier dimensions in the shape have larger strides than later dimensions. For example, a C array declared as int arr[1][2][3]
would have a shape specified as {1, 2, 3}
.
-
Parameters:
- shape – The shape of the tensor.
- rankSize – The rank size of the tensor.
- dtype – The datatype for the tensor.
- tensorName – The name for the tensor. This string gets copied as part of the operation of
M_newTensorSpec
, so your original string need not remain valid after the completion of this call.
-
Returns:
A pointer to the tensor spec. You are responsible for the memory associated with the pointer returned. The memory can be deallocated by calling
M_freeTensorSpec()
.
M_isDynamicRanked()
int M_isDynamicRanked(const M_TensorSpec *spec)
Returns if the given spec has a dynamic rank.
-
Parameters:
spec – The tensor spec.
-
Returns:
1
if the rank is dynamic.0
otherwise.
M_getDimAt()
int64_t M_getDimAt(const M_TensorSpec *spec, size_t axis)
Gets the element at a particular axis.
-
Parameters:
- spec – The tensor spec.
- axis – The requested axis
-
Returns:
The dimension at requested axis if the spec and axis are valid and has static rank. Otherwise,
0
. A dimension equalingM_getDynamicDimensionValue()
indicates dynamic dimension e.g. batch-size of a model expecting a batched tensor.
M_getRank()
int64_t M_getRank(const M_TensorSpec *spec)
Gets the rank from the tensor spec.
-
Parameters:
spec – The tensor spec.
-
Returns:
The number of dimensions in the tensor spec if the spec is static and valid,
M_getDynamicRankValue()
if dynamic. Otherwise,0
.
M_getDtype()
M_Dtype M_getDtype(const M_TensorSpec *spec)
Gets the datatype from the tensor spec.
-
Parameters:
spec – The tensor spec.
-
Returns:
The element type from the tensor spec if the tensor spec is valid. Otherwise,
M_UNKNOWN
.
M_getName()
const char *M_getName(M_TensorSpec *spec)
Gets the name of the tensor from the tensor spec.
-
Parameters:
spec – The tensor spec.
-
Returns:
A null-terminated string containing the name of the tensor if the
spec
is valid. Otherwise,NULL
. The memory associated with the returned string is owned byspec
.
M_newAsyncTensorMap()
M_AsyncTensorMap *M_newAsyncTensorMap(const M_RuntimeContext *context)
Creates a map of tensor names to async tensors.
-
Parameters:
- context – The runtime context.
- size – The size of the collection.
-
Returns:
A pointer to the tensor map. You are responsible for the memory associated with the pointer returned. The memory can be deallocated by calling
M_freeAsyncTensorMap()
.
M_copyAsyncTensorMap()
M_AsyncTensorMap *M_copyAsyncTensorMap(const M_AsyncTensorMap *tensorMap)
Copies a tensor map.
-
Parameters:
tensor – The tensor to copy.
-
Returns:
A pointer to the tensor map. You are responsible for the memory associated with the pointer returned. The memory can be deallocated by calling
M_freeAsyncTensorMap()
.
M_getTensorMapSize()
size_t M_getTensorMapSize(const M_AsyncTensorMap *tensorMap, M_Status *status)
Gets the size of the tensor map.
-
Parameters:
- tensorMap – The tensor map.
- status – The status object for reporting errors.
-
Returns:
The size of the tensor map if the tensor map is valid. Otherwise,
0
and thestatus
parameter contains an error message.
M_borrowTensorInto()
void M_borrowTensorInto(M_AsyncTensorMap *tensors, const void *input, const M_TensorSpec *tensorSpec, M_Status *status)
Adds a tensor to the tensor map.
You are responsible for the lifetime of the input tensor data. Its data gets “borrowed” into the Tensor Map.
-
Parameters:
- tensors – The tensor map, from
M_newAsyncTensorMap()
. - input – The input tensor data.
- tensorSpec – The tensor spec, from
M_newTensorSpec()
. This gets copied as part of the operation ofM_borrowTensorInto
, so your original tensorSpec need not exist through the lifetime of the tensor map. - status – The status object for reporting errors.
- tensors – The tensor map, from
M_createBorrowedTensor()
M_AsyncValue *M_createBorrowedTensor(const void *data, const M_TensorSpec *tensorSpec, M_RuntimeContext *context)
Creates a borrowed tensor wrapped in an AsyncValue
.
-
Parameters:
- data – The tensor data.
- tensorSpec – The tensor spec, from
M_newTensorSpec()
. This gets copied as part of the operation ofM_createBorrowedTensor()
, so your original tensorSpec need not exist through the lifetime of the tensor. - context – The runtime context.
-
Returns:
A pointer to the value. You are responsible for the memory associated with the pointer returned. The memory can be deallocated by calling
M_freeValue()
. The held value inside the return value is owned by theAsyncValue
, however the tensor data is borrowed and must outlive the returnedM_AsyncValue
.
M_getTensorByNameFrom()
M_AsyncTensor *M_getTensorByNameFrom(M_AsyncTensorMap *tensorMap, const char *name, M_Status *status)
Gets a tensor from the tensor map by name.
-
Parameters:
- tensorMap – The tensor map.
- tensorName – The name of the tensor.
- status – The status object for reporting errors.
-
Returns:
A pointer to the tensor. You are responsible for the memory associated with the pointer returned. The memory can be deallocated by calling
M_freeTensor()
. The held tensor inside the return value is simply borrowed from the corresponding inputM_AsyncTensorMap
. If the tensor map or name are invalid, aNULL
pointer is returned and thestatus
parameter contains an error message.
M_tensorMapKeys()
const char **M_tensorMapKeys(M_AsyncTensorMap *tensorMap, int64_t *size)
M_deleteTensorMapKeys()
void M_deleteTensorMapKeys(const char **keys)
M_getTensorFromValue()
M_AsyncTensor *M_getTensorFromValue(M_AsyncValue *value)
Gets a tensor from the async value.
-
Parameters:
value – The async value.
-
Returns:
A pointer to the tensor. You are responsible for the memory associated with the pointer returned. The memory can be deallocated by calling
M_freeTensor()
. The held tensor inside the return value is simply borrowed from theM_AsyncValue
. Note that the tensor name is not available through this method (unlikeM_getTensorByNameFrom
). If the value is invalid or not a tensor, aNULL
pointer is returned.
M_getTensorNumElements()
size_t M_getTensorNumElements(const M_AsyncTensor *tensor)
Gets the number of elements for the tensor.
-
Parameters:
tensor – The tensor which must not be
NULL
. -
Returns:
The number of elements for the given tensor.
M_getTensorType()
M_Dtype M_getTensorType(const M_AsyncTensor *tensor)
Gets the corresponding M_Dtype
for the tensor.
-
Parameters:
tensor – The tensor which must not be
NULL
. -
Returns:
The corresponding
M_Dtype
for the tensor.
M_getTensorData()
const void *M_getTensorData(const M_AsyncTensor *tensor)
Gets a pointer to underlying data of the tensor.
-
Parameters:
tensor – The tensor which must not be
NULL
. -
Returns:
A pointer to the underlying data of the tensor. This pointer is valid for the lifetime of the underlying tensor.
M_getTensorSpec()
M_TensorSpec *M_getTensorSpec(const M_AsyncTensor *tensor)
Gets a Tensor Spec for the tensor.
-
Parameters:
tensor – The tensor.
-
Returns:
The tensor spec for the tensor if the tensor is valid. Otherwise,
NULL
.
M_getTensorMapIterator()
M_TensorMapIterator *M_getTensorMapIterator(M_AsyncTensorMap *tensorMap, M_Status *status)
Gets a tensor map iterator for the tensor map.
-
Parameters:
- tensorMap – The tensor map.
- status – The status object for reporting errors.
-
Returns:
A pointer to the tensor map iterator. You are responsible for the memory associated with the pointer returned. The memory can be deallocated by calling
M_freeTensorMapIterator()
. If the tensor map is invalid, aNULL
pointer is returned and thestatus
parameter contains an error message.
M_advanceTensorMapIterator()
void M_advanceTensorMapIterator(M_TensorMapIterator *iterator)
Advances the tensor map iterator by one entry.
-
Parameters:
iterator – The tensor map iterator.
M_getNameFromMapIterator()
const char *M_getNameFromMapIterator(M_TensorMapIterator *iterator)
Gets the name of the tensor from the tensor map iterator.
-
Parameters:
iterator – The tensor map iterator.
-
Returns:
A null-terminated string containing the name of the tensor if the
iterator
is valid. Otherwise,NULL
. The memory associated with the returned string is owned byspec
.
M_getTensorFromMapIterator()
M_AsyncTensor *M_getTensorFromMapIterator(M_TensorMapIterator *iterator)
Gets the tensor from the tensor map iterator.
-
Parameters:
iterator – The tensor map iterator.
-
Returns:
A pointer to the tensor. You are responsible for the memory associated with the pointer returned. The memory can be deallocated by calling
M_freeTensor()
. The held tensor inside the return value is simply borrowed from the corresponding inputM_AsyncTensorMap
. If the tensor map iterator is invalid, aNULL
pointer is returned.
M_isEndOfTensorMap()
bool M_isEndOfTensorMap(M_AsyncTensorMap *tensorMap, M_TensorMapIterator *iterator)
Checks if the iterator has reached the end of the tensor map.
-
Parameters:
- tensorMap – The tensor map.
- iterator – The tensor map iterator.
-
Returns:
True if the iterator points to the end of the map, false otherwise. Also returns true if either the tensorMap or iterator are invalid.
M_freeTensor()
void M_freeTensor(M_AsyncTensor *tensor)
Deallocates the memory for the tensor. No-op if tensor
is NULL.
-
Parameters:
tensor – The tensor to deallocate.
M_freeTensorNameArray()
void M_freeTensorNameArray(M_TensorNameArray *names)
Deallocates the memory for the array of tensor names. No-op if names
is NULL
.
-
Parameters:
names – The tensor names to deallocate.
M_freeTensorSpec()
void M_freeTensorSpec(M_TensorSpec *spec)
Deallocates the memory for the tensor spec. No-op if spec
is NULL
.
-
Parameters:
spec – The tensor spec to deallocate.
M_freeAsyncTensorMap()
void M_freeAsyncTensorMap(M_AsyncTensorMap *tensorMap)
Deallocates the memory for the tensor map. No-op if tensorMap
is NULL
.
-
Parameters:
tensorMap – The tensor map to deallocate.
M_freeTensorMapIterator()
void M_freeTensorMapIterator(M_TensorMapIterator *iterator)
Deallocates the memory for the tensor map iterator. No-op if iterator
is NULL
.
-
Parameters:
iterator – The tensor map iterator to deallocate.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!
😔 What went wrong?