Skip to main content

Calling Mojo from Python

If you have an existing Python project that would benefit from Mojo's high-performance computing, you shouldn't have to rewrite the whole thing in Mojo. Instead, you can write just the performance-critical parts your code in Mojo and then call it from Python.

Import a Mojo module in Pythonโ€‹

To illustrate what calling Mojo from Python looks like, we'll start with a simple example, and then dig into the details of how it works and what is possible today.

Consider a project with the following structure:

project
โ”œโ”€โ”€ ๐Ÿ main.py
โ””โ”€โ”€ ๐Ÿ”ฅ mojo_module.mojo
project
โ”œโ”€โ”€ ๐Ÿ main.py
โ””โ”€โ”€ ๐Ÿ”ฅ mojo_module.mojo

The main entrypoint is a Python program called main.py, and the Mojo code includes functions to call from Python.

For example, let's say we want a Mojo function to take a Python value as an argument:

๐Ÿ”ฅ mojo_module.mojo
fn factorial(py_obj: PythonObject) raises -> Python
var n = Int(py_obj)
return math.factorial(n)
fn factorial(py_obj: PythonObject) raises -> Python
var n = Int(py_obj)
return math.factorial(n)

And we want to call it from Python like this:

๐Ÿ main.py
import mojo_module

print(mojo_module.factorial(5))
import mojo_module

print(mojo_module.factorial(5))

However, before we can call the Mojo function from Python, we must declare it so Python knows it exists.

Because Python is trying to load mojo_module, it looks for a function called PyInit_mojo_module(). (If our file was called foo.mojo, the function Python looked for would be PyInit_foo().) Within the PyInit_mojo_module(), we must declare all Mojo functions and types that are callable from Python using PythonModuleBuilder.

So the complete Mojo code looks like this:

๐Ÿ”ฅ mojo_module.mojo
from python import PythonObject
from python.bindings import PythonModuleBuilder
import math
from os import abort

@export
fn PyInit_mojo_module() -> PythonObject:
try:
var m = PythonModuleBuilder("mojo_module")
m.def_function[factorial]("factorial", docstring="Compute n!")
return m.finalize()
except e:
return abort[PythonObject](String("error creating Python Mojo module:", e))

fn factorial(py_obj: PythonObject) raises -> PythonObject:
# Raises an exception if `py_obj` is not convertible to a Mojo `Int`.
var n = Int(py_obj)

return math.factorial(n)
from python import PythonObject
from python.bindings import PythonModuleBuilder
import math
from os import abort

@export
fn PyInit_mojo_module() -> PythonObject:
try:
var m = PythonModuleBuilder("mojo_module")
m.def_function[factorial]("factorial", docstring="Compute n!")
return m.finalize()
except e:
return abort[PythonObject](String("error creating Python Mojo module:", e))

fn factorial(py_obj: PythonObject) raises -> PythonObject:
# Raises an exception if `py_obj` is not convertible to a Mojo `Int`.
var n = Int(py_obj)

return math.factorial(n)

On the Python side, we add the directory containing mojo_module.mojo to the Python path, and then use a normal import statement to load our Mojo code:

๐Ÿ main.py
import max.mojo.importer
import sys

sys.path.insert(0, "")

import mojo_module

print(mojo_module.factorial(5))
import max.mojo.importer
import sys

sys.path.insert(0, "")

import mojo_module

print(mojo_module.factorial(5))

That's it! Try it:

python main.py
python main.py
120
120

How it worksโ€‹

Python supports a standard mechanism called Python extension modules that enables compiled languages (like Mojo, C, C++, or Rust) to make themselves callable from Python in an intuitive way. Concretely, a Python extension module is simply a dynamic library that defines a suitable PyInit_*() function.

Mojo comes with built-in functionality for defining Python extension modules. The special stuff happens in the max.mojo.importer module we imported.

If we have a look at the filesystem after Python imports the Mojo code, we'll notice there's a new __mojocache__ directory, with dynamic library (.so) file inside:

project
โ”œโ”€โ”€ main.py
โ”œโ”€โ”€ mojo_module.mojo
โ””โ”€โ”€ __mojocache__
โ””โ”€โ”€ mojo_module.hash-ABC123.so
project
โ”œโ”€โ”€ main.py
โ”œโ”€โ”€ mojo_module.mojo
โ””โ”€โ”€ __mojocache__
โ””โ”€โ”€ mojo_module.hash-ABC123.so

Loading max.mojo.importer loads our Python Mojo import hook, which behind the scenes looks for a .mojo (or .๐Ÿ”ฅ) file that matches the imported module name, and if found, compiles it using mojo build --emit shared-lib to generate a static library. The resulting file is stored in __mojocache__, and is rebuilt only when it becomes stale (typically, when the Mojo source file changes).

Now that we've looked at the basics of how Mojo can be used from Python, let's dig into the available features and how you can leverage them to accelerate your Python with Mojo.

Bindings featuresโ€‹

Binding Mojo typesโ€‹

You can bind any Mojo type for use in Python using PythonModuleBuilder. For example:

๐Ÿ”ฅ Mojo
@fieldwise_init
struct Person(Movable, Representable):
var name: String
var age: Int

fn __repr__(self) -> String:
return String("Person(", self.name, ", ", self.age, ")")

@export
fn PyInit_person_module() -> PythonObject:
try:
var mb = PythonModuleBuilder("person_module")
var person_type = mb.add_type[Person]("Person")
except e:
return abort[PythonObject]("error creating Mojo module")
@fieldwise_init
struct Person(Movable, Representable):
var name: String
var age: Int

fn __repr__(self) -> String:
return String("Person(", self.name, ", ", self.age, ")")

@export
fn PyInit_person_module() -> PythonObject:
try:
var mb = PythonModuleBuilder("person_module")
var person_type = mb.add_type[Person]("Person")
except e:
return abort[PythonObject]("error creating Mojo module")

When you call add_type(), it returns a PythonTypeBuilder, which you can then use to bind the type constructor (see binding Python initializers, below) and methods.

Any Mojo type bound using a PythonTypeBuilder has the resulting Python 'type' object globally registered, enabling two features:

  • Constructing Python objects that wrap Mojo values for use from Python using PythonObject(alloc=Person(..)).

  • Downcasting using python_obj.downcast_value_ptr[Person]()

However, merely binding a Mojo type to a Python type object isnโ€™t very useful on its own. Next, weโ€™ll tell Python how to interact with our Mojo typeโ€”starting with how to construct instances of our Mojo type from within Python.

Constructing Mojo objects in Pythonโ€‹

Mojo types can be constructed from Python by declaring a Mojo constructor function as a Python-compatible object initializer using def_py_init() when you add the type to your module. For example:

๐Ÿ”ฅ Mojo
@export
fn PyInit_person_module() -> PythonObject:
try:
var mb = PythonModuleBuilder("person_module")
_ = mb.add_type[Person]("Person").def_py_init[Person.py_init]()
return mb.finalize()
except e:
return abort[PythonObject](
String("error creating Python Mojo module:", e)
)

@fieldwise_init
struct Person(Movable, Representable):
var name: String
var age: Int

fn __repr__(self) -> String:
return String("Person(", self.name, ", ", self.age, ")")

@staticmethod
fn py_init(
out self: Person, args: PythonObject, kwargs: PythonObject
) raises:
# Validate argument count
if len(args) != 2:
raise Error("Person() takes exactly 2 arguments")

# Convert Python arguments to Mojo types
var name = String(args[0])
var age = Int(args[1])

self = Self(name, age)
@export
fn PyInit_person_module() -> PythonObject:
try:
var mb = PythonModuleBuilder("person_module")
_ = mb.add_type[Person]("Person").def_py_init[Person.py_init]()
return mb.finalize()
except e:
return abort[PythonObject](
String("error creating Python Mojo module:", e)
)

@fieldwise_init
struct Person(Movable, Representable):
var name: String
var age: Int

fn __repr__(self) -> String:
return String("Person(", self.name, ", ", self.age, ")")

@staticmethod
fn py_init(
out self: Person, args: PythonObject, kwargs: PythonObject
) raises:
# Validate argument count
if len(args) != 2:
raise Error("Person() takes exactly 2 arguments")

# Convert Python arguments to Mojo types
var name = String(args[0])
var age = Int(args[1])

self = Self(name, age)

With this Mojo binding, you can create Person instances in Python:

๐Ÿ Python
person = person_module.Person("Sarah", 32)
print(person)
person = person_module.Person("Sarah", 32)
print(person)
Person(Sarah, 32)
Person(Sarah, 32)

For types that support default construction, you can use the simpler def_init_defaultable() method:

๐Ÿ”ฅ Mojo
var counter_type = m.add_type[Counter]("Counter")
counter_type.def_init_defaultable[Counter]()
var counter_type = m.add_type[Counter]("Counter")
counter_type.def_init_defaultable[Counter]()

This enables Python code to create instances without arguments:

๐Ÿ Python
counter = counter_module.Counter()  # Creates Counter()
counter = counter_module.Counter()  # Creates Counter()

Returning Mojo objects to Pythonโ€‹

Mojo functions called from Python don't just need to be able to accept PythonObject values as arguments, they also need to be able to return new values. And sometimes, they even need to be able to return Mojo native values back to Python. This is possible by using the PythonObject(alloc=<value>) constructor.

An example of this looks like:

๐Ÿ”ฅ Mojo
fn create_person() -> PythonObject:
var person = Person("Sarah", 32)
return PythonObject(alloc=person^)
fn create_person() -> PythonObject:
var person = Person("Sarah", 32)
return PythonObject(alloc=person^)

PythonObject to Mojo valuesโ€‹

Within any Mojo code that is handling a PythonObject, but especially within Mojo functions called from Python, it's common to expect an argument of a particular type.

There are two ways in which a PythonObject can be turned into a native Mojo value:

  • Converting a Python object into a newly constructed Mojo value that has the same logical value as the original Python object. This is handled by the ConvertibleFromPython trait.

  • Downcasting a Python object that holds a native Mojo value to a pointer to that inner value. This is handled by PythonObject.downcast_value_ptr().

PythonObject conversionsโ€‹

Many Mojo types support conversion directly from equivalent Python types, via the ConvertibleFromPython trait:

๐Ÿ”ฅ Mojo
# Given a person, clone them and give them a different name.
fn create_person(
name_obj: PythonObject,
age_obj: PythonObject
) raises -> PythonObject:
# These conversions will raise an exception if they fail
var name = String(name_obj)
var age = Int(age_obj)

return PythonObject(alloc=Person(name, age))
# Given a person, clone them and give them a different name.
fn create_person(
name_obj: PythonObject,
age_obj: PythonObject
) raises -> PythonObject:
# These conversions will raise an exception if they fail
var name = String(name_obj)
var age = Int(age_obj)

return PythonObject(alloc=Person(name, age))

Which could be called from Python using:

๐Ÿ Python
person = mojo_module.create_person("John Smith")
person = mojo_module.create_person("John Smith")

Passing invalid arguments will result in a runtime argument error:

๐Ÿ Python
person = mojo_module.create_person(42)
person = mojo_module.create_person(42)

PythonObject downcastsโ€‹

Downcasting from PythonObject values to the inner Mojo value:

๐Ÿ”ฅ Mojo
fn print_age(person_obj: PythonObject) raises:
# Raises if `obj` does not contain an instance of the Mojo `Person` type.
var person = person_obj.downcast_value_ptr[Person]()

print("Person is", person[].age, "years old")
fn print_age(person_obj: PythonObject) raises:
# Raises if `obj` does not contain an instance of the Mojo `Person` type.
var person = person_obj.downcast_value_ptr[Person]()

print("Person is", person[].age, "years old")

Unsafe mutation via downcasting is also supported. It is up to the user to ensure that this mutable pointer does not alias any other pointers to the same object within Mojo:

๐Ÿ”ฅ Mojo
fn birthday(person_obj: PythonObject):
var person = person_obj.downcast_value_ptr[Person]()

person[].age += 1
fn birthday(person_obj: PythonObject):
var person = person_obj.downcast_value_ptr[Person]()

person[].age += 1

Entirely unchecked downcastingโ€”which does no type checkingโ€”can be done using:

๐Ÿ”ฅ Mojo
fn get_person(person_obj: PythonObject):
var person = person_obj.unchecked_downcast_value_ptr[Person]()
fn get_person(person_obj: PythonObject):
var person = person_obj.unchecked_downcast_value_ptr[Person]()

Unchecked downcasting can be used to eliminate overhead when optimizing a tight inner loop with Mojo, and you've benchmarked and measured that type checking downcasts is a significant bottleneck.

Methodsโ€‹

When binding Mojo objects for use from Python, you can expose chosen methods to Python as well, using PythonTypeBuilder.def_method().

Currently, Mojo methods being exposed to Python must be written with a modification compared to normal Mojo methods: they must be a @staticmethod that takes either py_self: PythonObject or self_ptr: UnsafePointer[Self]:

๐Ÿ”ฅ Mojo
from python import PythonObject
from python.bindings import PythonModuleBuilder
from os import abort

@export
fn PyInit_mojo_module() -> PythonObject:
try:
var mb = PythonModuleBuilder("mojo_module")
_ = mb.add_type[Person]("Person")
.def_method[Person.get_name]("get_name")
.def_method[Person.set_age]("set_age")
return mb.finalize()
except e:
return abort[PythonObject]("error creating Mojo module")

struct Person(Representable):
var name: String
var age: Int

@staticmethod
fn get_name(py_self: PythonObject) raises -> PythonObject:
var self_ptr = py_self.downcast_value_ptr[Self]()
return self_ptr[].name

@staticmethod
fn set_age(self_ptr: UnsafePointer[Self], new_age: PythonObject) raises:
self_ptr[].age = Int(new_age)

fn __repr__(self) -> String:
return String("Person(", self.name, ", ", self.age, ")")
from python import PythonObject
from python.bindings import PythonModuleBuilder
from os import abort

@export
fn PyInit_mojo_module() -> PythonObject:
try:
var mb = PythonModuleBuilder("mojo_module")
_ = mb.add_type[Person]("Person")
.def_method[Person.get_name]("get_name")
.def_method[Person.set_age]("set_age")
return mb.finalize()
except e:
return abort[PythonObject]("error creating Mojo module")

struct Person(Representable):
var name: String
var age: Int

@staticmethod
fn get_name(py_self: PythonObject) raises -> PythonObject:
var self_ptr = py_self.downcast_value_ptr[Self]()
return self_ptr[].name

@staticmethod
fn set_age(self_ptr: UnsafePointer[Self], new_age: PythonObject) raises:
self_ptr[].age = Int(new_age)

fn __repr__(self) -> String:
return String("Person(", self.name, ", ", self.age, ")")

Taking py_self: PythonObject allows access to the full PythonObject allocation that a Mojo object instance is stored inside of. Typically though, taking py_self: UnsafePointer[Self] will minimize boilerplate in the common case that a method merely needs to access the fields of an object.

Mojo methods called from Python are currently required to take non-standard self types due to limitations that will be lifted in future versions of Python Mojo bindings.

Static methodsโ€‹

Python Mojo bindings supports exposing Python @staticmethods, bound using PythonTypeBuilder.def_staticmethod(). A function declared using def_staticmethod() is callable as a static method on the type within Python, without needing an object instance.

๐Ÿ”ฅ Mojo
from python import PythonObject
from python.bindings import PythonModuleBuilder
from os import abort

@export
fn PyInit_mojo_module() -> PythonObject:
try:
var mb = PythonModuleBuilder("mojo_module")
mb.add_type[Person]("Person")
.def_staticmethod[Person.is_valid_age]("is_valid_age")
return mb.finalize()
except e:
return abort[PythonObject]("error creating Mojo module")

struct Person(Representable):
var name: String
var age: Int

@staticmethod
fn is_valid_age(age_obj: PythonObject) raises -> PythonObject:
var age = Int(age_obj)
return 0 <= age <= 130

fn __repr__(self) -> String:
return String("Person(", self.name, ", ", self.age, ")")
from python import PythonObject
from python.bindings import PythonModuleBuilder
from os import abort

@export
fn PyInit_mojo_module() -> PythonObject:
try:
var mb = PythonModuleBuilder("mojo_module")
mb.add_type[Person]("Person")
.def_staticmethod[Person.is_valid_age]("is_valid_age")
return mb.finalize()
except e:
return abort[PythonObject]("error creating Mojo module")

struct Person(Representable):
var name: String
var age: Int

@staticmethod
fn is_valid_age(age_obj: PythonObject) raises -> PythonObject:
var age = Int(age_obj)
return 0 <= age <= 130

fn __repr__(self) -> String:
return String("Person(", self.name, ", ", self.age, ")")

Calling a Mojo function bound as a static method looks like a typical Python static method call directly on the type object:

๐Ÿ main.py
from mojo_module import Person

print(Person.is_valid_age(45)) # Prints 'True'
print(Person.is_valid_age(-1)) # Prints 'False'
from mojo_module import Person

print(Person.is_valid_age(45)) # Prints 'True'
print(Person.is_valid_age(-1)) # Prints 'False'

Keyword argumentsโ€‹

Keyword arguments in Mojo come in two forms:

  1. Keyword-only arguments: fn foo(*, x: Int) This is not currently supported in Python Mojo bindings.
  2. Variadic keyword arguments: fn foo(**kwargs: Int) This is supported in Python Mojo bindings when used in the unsugared form: fn foo(kwargs: OwnedKwargsDict). (The **kwargs syntax limitation will be removed in the future.)

You can define Mojo functions that accept variadic keyword arguments using OwnedKwargsDict[PythonObject] as the last argument. A simple example looks like:

๐Ÿ Python
import mojo_module

result = mojo_module.sum_kwargs_ints(a=10, b=20, c=30) # returns 60
import mojo_module

result = mojo_module.sum_kwargs_ints(a=10, b=20, c=30) # returns 60
๐Ÿ”ฅ Mojo
from collections import OwnedKwargsDict

def sum_kwargs_ints(kwargs: OwnedKwargsDict[PythonObject]) -> PythonObject:
var total = 0
for entry in kwargs.items():
total += Int(entry.value)
return PythonObject(total)
from collections import OwnedKwargsDict

def sum_kwargs_ints(kwargs: OwnedKwargsDict[PythonObject]) -> PythonObject:
var total = 0
for entry in kwargs.items():
total += Int(entry.value)
return PythonObject(total)

Keyword arguments are also supported following normal positional arguments. Additionally, getting specific keyword arguments is a dictionary lookup on the OwnedKwargsDict:

๐Ÿ”ฅ Mojo
from collections import OwnedKwargsDict

def duration_in_seconds(
hours_obj: PythonObject,
minutes_obj: PythonObject,
kwargs: OwnedKwargsDict[PythonObject]
) -> PythonObject:
var hours = Int(hours_obj)
var minutes = Int(minutes_obj)

var seconds = Int(kwargs["seconds"])

return hours * 3600 + minutes * 60 + seconds
from collections import OwnedKwargsDict

def duration_in_seconds(
hours_obj: PythonObject,
minutes_obj: PythonObject,
kwargs: OwnedKwargsDict[PythonObject]
) -> PythonObject:
var hours = Int(hours_obj)
var minutes = Int(minutes_obj)

var seconds = Int(kwargs["seconds"])

return hours * 3600 + minutes * 60 + seconds

In this example, if a call to duration_in_seconds() is missing the required "seconds" named argument, a runtime exception will occur:

๐Ÿ main.py
from mojo_module import duration_in_seconds

# Pass hours and minutes, missing "seconds"
duration_in_seconds(4, 5) # ERROR: KeyError
from mojo_module import duration_in_seconds

# Pass hours and minutes, missing "seconds"
duration_in_seconds(4, 5) # ERROR: KeyError

Keyword arguments are supported when bindings top-level functions, methods, and static methods.

Variadic argumentsโ€‹

Python and Mojo variadic arguments are normally written using the following syntax:

๐Ÿ”ฅ Mojo
fn foo(*args: Int):
...
fn foo(*args: Int):
...

However, this syntax is not yet supported in Python/Mojo bindings, because functions bound using def_function() support only fixed-arity functions.

As a workaround, you can expose Mojo functions that accept a variadic number of arguments to Python using the lower-level def_py_function() interface, which leaves it to the user to validate the number of arguments provided:

๐Ÿ”ฅ Mojo
@export
fn PyInit_mojo_module() -> PythonObject:
try:
var b = PythonModuleBuilder("mojo_module")
b.def_py_function[count_args]("count_args")
b.def_py_function[sum_args]("sum_args")
b.def_py_function[lookup]("lookup")

fn count_args(py_self: PythonObject, args_tuple: PythonObject) raises:
return len(args_tuple)

fn sum_args(py_self: PythonObject, args_tuple: PythonObject) raises:
var total = args_tuple[0]
for i in range(1, len(args_tuple)):
total += args_tuple[i]
return total

fn lookup(py_self: PythonObject, args_tuple: PythonObject) raises:
if len(args_tuple) != 2 and len(args_tuple) != 3:
raise Error("lookup() expects 2 or 3 arguments")

var collection = args_tuple[0]
var key = args_tuple[1]

try:
return collection[key]
except e:
if len(args) == 3:
return args_tuple[2]
else:
raise e
@export
fn PyInit_mojo_module() -> PythonObject:
try:
var b = PythonModuleBuilder("mojo_module")
b.def_py_function[count_args]("count_args")
b.def_py_function[sum_args]("sum_args")
b.def_py_function[lookup]("lookup")

fn count_args(py_self: PythonObject, args_tuple: PythonObject) raises:
return len(args_tuple)

fn sum_args(py_self: PythonObject, args_tuple: PythonObject) raises:
var total = args_tuple[0]
for i in range(1, len(args_tuple)):
total += args_tuple[i]
return total

fn lookup(py_self: PythonObject, args_tuple: PythonObject) raises:
if len(args_tuple) != 2 and len(args_tuple) != 3:
raise Error("lookup() expects 2 or 3 arguments")

var collection = args_tuple[0]
var key = args_tuple[1]

try:
return collection[key]
except e:
if len(args) == 3:
return args_tuple[2]
else:
raise e

Strategies for porting Python to Mojoโ€‹

Writing Pythonic code in Mojoโ€‹

In this approach to bindings, we embrace the flexibility of Python, and eschew trying to convert PythonObject arguments into the narrowly constrained, strongly-typed space of the Mojo type system, in favor of just writing some code and letting it raise an exception at runtime if we got something wrong.

The flexibility of PythonObject enables a unique programming style, wherein Python code can be "ported" to Mojo with relatively few changes.

๐Ÿ Python
def foo(x, y, z):
x[y] = int(z)
x = y + z
def foo(x, y, z):
x[y] = int(z)
x = y + z

Rule of thumb: Any Python builtin function should be accessible in Mojo using Python.<builtin>().

๐Ÿ”ฅ Mojo
fn foo(x: PythonObject, y: PythonObject, z: PythonObject) -> PythonObject:
x[y] = Python.int(z)
x = y + z
fn foo(x: PythonObject, y: PythonObject, z: PythonObject) -> PythonObject:
x[y] = Python.int(z)
x = y + z

Building Mojo extension modulesโ€‹

You can create and distribute your Mojo modules for Python in the following ways:

  • As source files, compiled on demand using the Python Mojo importer hook.

    The advantage of this approach is that it's easy to get started with, and keeps your project structure simple, while ensuring that your imported Mojo code is always up to date after you make an edit.

  • As pre-built Python extension module .so dynamic libraries, compiled using:

    mojo build mojo_module.mojo --emit shared-lib -o mojo_module.so

    This has the advantage that you can specify any other necessary build options
    manually (optimization or debug flags, import paths, etc.), providing an
    "escape hatch" from the Mojo import hook abstraction for advanced users.
    mojo build mojo_module.mojo --emit shared-lib -o mojo_module.so

    This has the advantage that you can specify any other necessary build options
    manually (optimization or debug flags, import paths, etc.), providing an
    "escape hatch" from the Mojo import hook abstraction for advanced users.

Known limitationsโ€‹

While we have big ambitions for Python to Mojo interoperabilityโ€”our goal is for Mojo to be the best way to extend Pythonโ€”this feature is still in early and active development, and there are some limitations to be aware of. These will be lifted over time.

  • Functions taking more than 6 arguments. Currently PyTypeBuilder.add_function() and related function bindings only support Mojo functions that take up to 6 PythonObject arguments: fn(PythonObject, PythonObject, PythonObject, PythonObject, PythonObject, PythonObject).

  • Keyword arguments syntax. Currently, Mojo functions called from Python only accept keyword arguments when using a trailing kwargs: OwnedKwargsDict[PythonObject] argument. Support for native **kwargs syntax will be added in the future.

  • Mojo package dependencies. Mojo code that has dependencies on packages other than the Mojo stdlib (like those in the ever-growing Modular Community package channel) are currently only supported when building Mojo extension modules manually, as the Mojo import hook does not currently support a way to specify import paths for Mojo package dependencies.

  • Properties. Computed properties getter and setters are not currently supported.

  • Expected type conversions. A handful of Mojo standard library types can be constructed directly from equivalent Python builtin object types, by implementing the ConvertibleFromPython trait. However, many Mojo standard library types do not yet implement this trait, so may require manual conversion logic if needed.

Was this page helpful?