Mojo function
advanced_indexing_setitem_inplace
advanced_indexing_setitem_inplace[input_rank: Int, index_rank: Int, updates_rank: Int, input_type: DType, index_type: DType, //, start_axis: Int, num_index_tensors: Int, target: StringSlice[StaticConstantOrigin], single_thread_blocking_override: Bool, trace_description: StringSlice[StaticConstantOrigin], updates_tensor_fn: fn[width: Int](IndexList[updates_rank]) capturing -> SIMD[input_type, width], indices_fn: fn[indices_index: Int](IndexList[index_rank]) capturing -> Scalar[index_type]](input_tensor: NDBuffer[input_type, input_rank, origin], index_tensor_shape: IndexList[index_rank, element_type=element_type], updates_tensor_strides: IndexList[updates_rank], ctx: DeviceContextPtr)
Implement basic numpy-style advanced indexing with assignment.
This is designed to be fused with other view-producing operations to implement full numpy-indexing semantics.
This assumes the dimensions in input_tensor not indexed by index tensors
are ":", ie selecting all indices along the slice. For example in numpy:
# rank(indices1) == 2
# rank(indices2) == 2
# rank(updates) == 2
input_tensor[:, :, :, indices1, indices2, :, :] = updatesWe calculate the following for all valid valued indexing variables:
input_tensor[
    a, b, c,
    indices1[i, j],
    indices2[i, j],
    d, e
] = updates[i, j]In this example start_axis = 3 and num_index_tensors = 2.
In terms of implementation details, our strategy is to iterate over
all indices over a common iteration range. The idea is we can map
indices in this range to the write location in input_tensor as well
as the data location in updates. An update can illustrate how this is
possible best:
Imagine the input_tensor shape is [A, B, C, D] and we have indexing
tensors I1 and I2 with shape [M, N, K]. Assume I1 and I2 are applied
to dimensions 1 and 2.
I claim an appropriate common iteration range is then (A, M, N, K, D).
Note we expect updates to be the shape [A, M, N, K, D]. We will show
this by providing the mappings into updates and input_tensor:
Consider an arbitrary set of indices in this range (a, m, n, k, d):
- The index into updates is (a, m, n, k, d).
- The index into input_tensor is (a, I1[m, n, k], I2[m, n, k], d).
TODO(GEX-1951): Support boolean tensor mask support TODO(GEX-1952): Support non-contiguous indexing tensor case TODO(GEX-1953): Support fusion (especially view-fusion) TODO(GEX-1954): Unify getitem and setitem using generic views. (Requires non-strided view functions).
Parameters:
- input_rank (Int): The rank of the input tensor.
- index_rank (Int): The rank of the indexing tensors.
- updates_rank (Int): The rank of the updates tensor.
- input_type (DType): The dtype of the input tensor.
- index_type (DType): The dtype of the indexing tensors.
- start_axis (Int): The first dimension in input where the indexing tensors are applied. It is assumed the indexing tensors are applied in consecutive dimensions.
- num_index_tensors (Int): The number of indexing tensors.
- target (StringSlice): The target architecture to operation on.
- single_thread_blocking_override (Bool): If True, then the operation is run synchronously using a single thread.
- trace_description (StringSlice): For profiling, the trace name the operation will appear under.
- updates_tensor_fn (fn[width: Int](IndexList[updates_rank]) capturing -> SIMD[input_type, width]): Fusion lambda for the update tensor.
- indices_fn (fn[indices_index: Int](IndexList[index_rank]) capturing -> Scalar[index_type]): Fusion lambda for the indices tensors.
Args:
- input_tensor (NDBuffer): The input tensor being indexed into and modified in-place.
- index_tensor_shape (IndexList): The shape of each index tensor.
- updates_tensor_strides (IndexList): The strides of the update tensor.
- ctx (DeviceContextPtr): The DeviceContextPtr as prepared by the graph compiler.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!
