Mojo function
gather_nd
gather_nd[dtype: DType, indices_type: DType, data_rank: Int, indices_rank: Int, output_rank: Int, batch_dims: Int, target: StringSlice[StaticConstantOrigin] = "cpu", single_thread_blocking_override: Bool = False](data: NDBuffer[dtype, data_rank, origin], indices: NDBuffer[indices_type, indices_rank, origin], output: NDBuffer[dtype, output_rank, origin], ctx: DeviceContextPtr)
GatherND operation as defined in https://github.com/onnx/onnx/blob/main/docs/Operators.md#GatherND. Based on reference implementation: https://github.com/onnx/onnx/blob/main/onnx/backend/test/case/node/gathernd.py.
Parameters:
- dtype (DType): Type of data tensor.
- indices_type (DType): Type of indices tensor.
- data_rank (Int): Rank of data tensor (data_rank >= 1).
- indices_rank (Int): Rank of indices tensor (indices_rank >= 1).
- output_rank (Int): Rank of output tensor.
- batch_dims (Int): Number of batch dimensions. The gather of indexing starts from dimension of data[batch_dims:].
- target (StringSlice): The target architecture to execute on.
- single_thread_blocking_override (Bool): If True, then the operation is run synchronously using a single thread.
Args:
- data (NDBuffer): Tensor of rank data_rank >= 1.
- indices (NDBuffer): Tensor of rank indices_rank >= 1. All index values are expected to be within bounds [-s, s-1] along axis of size s. It is an error if any of the index values are out of bounds.
- output (NDBuffer): Tensor of rank data_rank + indices_rank - indices_shape[-1] - 1 - b.
- ctx (DeviceContextPtr): The DeviceContextPtr as prepared by the graph compiler.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!
