Mojo function
conv_transpose_shape
conv_transpose_shape[dtype: DType, strides_type: DType, dilations_type: DType, pads_type: DType, output_pads_type: DType, single_thread_blocking_override: Bool](input: LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], kernel: LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], strides: LayoutTensor[strides_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], dilations: LayoutTensor[dilations_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], pads: LayoutTensor[pads_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], output_pads: LayoutTensor[output_pads_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment]) -> IndexList[layout.rank()]
Compute the output shape of a conv-transpose operation, and assert the inputs are compatible.
Parameters:
- dtype (DType): Element type of the input and kernel tensor.
- strides_type (DType): Element type of the strides tensor.
- dilations_type (DType): Element type of the dilations tensor.
- pads_type (DType): Element type of the pads tensor.
- output_pads_type (DType): Element type of the output_pads tensor.
- single_thread_blocking_override (Bool): If True, then the operation is run synchronously using a single thread.
Args:
- input (LayoutTensor): The input tensor.
- kernel (LayoutTensor): The kernel tensor.
- strides (LayoutTensor): The strides tensor.
- dilations (LayoutTensor): The dilations tensor.
- pads (LayoutTensor): The paddings tensor.
- output_pads (LayoutTensor): The output paddings tensor.
Returns:
IndexList: The output shape.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!
