Mojo function
conv_shape
conv_shape[input_rank: Int, filter_rank: Int, input_type: DType, filter_type: DType, strides_type: DType, dilations_type: DType, paddings_type: DType, single_thread_blocking_override: Bool](input_buf: NDBuffer[input_type, input_rank, origin], filter_buf: NDBuffer[filter_type, filter_rank, origin], strides_buf: NDBuffer[strides_type, 1, origin], dilations_buf: NDBuffer[dilations_type, 1, origin], paddings_buf: NDBuffer[paddings_type, 1, origin], num_groups_scalar: Scalar[dtype]) -> IndexList[input_rank]
Compute the output shape of a conv operation, and assert the inputs are compatible.
Parameters:
- input_rank (Int): Rank of the input tensor.
- filter_rank (Int): Rank of the filter tensor.
- input_type (DType): Type of the input tensor.
- filter_type (DType): Type of the filter tensor.
- strides_type (DType): Type of the strides tensor.
- dilations_type (DType): Type of the dilations tensor.
- paddings_type (DType): Type of the paddings tensor.
- single_thread_blocking_override (Bool): If True, then the operation is run ssynchronouslysing a single thread.
Args:
- input_buf (NDBuffer): The input tensor.
- filter_buf (NDBuffer): The filter tensor.
- strides_buf (NDBuffer): The strides tensor.
- dilations_buf (NDBuffer): The dilations tensor.
- paddings_buf (NDBuffer): The paddings tensor.
- num_groups_scalar (Scalar): The num_groups scalar.
Returns:
IndexList: The output shape.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!
