Python module
conv
Conv1D
class max.pipelines.nn.conv.Conv1D(filter: Value | TensorValue | Shape | Dim | int | float | integer | floating | ndarray, stride: int = 1, padding: int = 0, dilation: int = 1, groups: int = 1, bias: bool = False)
A 1D convolution over an input signal composed of several input planes.
bias
bias*: bool* = False
dilation
dilation*: int* = 1
filter
filter*: Value | TensorValue | Shape | Dim | int | float | integer | floating | ndarray*
groups
groups*: int* = 1
padding
padding*: int* = 0
stride
stride*: int* = 1
Conv2D
class max.pipelines.nn.conv.Conv2D(filter: Value | TensorValue | Shape | Dim | int | float | integer | floating | ndarray, stride: int | Tuple[int, int] = (1, 1), padding: int | Tuple[int, int, int, int] = (0, 0, 0, 0), dilation: int | Tuple[int, int] = (1, 1), groups: int = 1, bias: bool = False)
A 2D convolution over an input signal composed of several input planes.
bias
bias*: bool* = False
dilation
filter
filter*: Value | TensorValue | Shape | Dim | int | float | integer | floating | ndarray*
groups
groups*: int* = 1
padding
stride
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!