Skip to main content
Log in

Python module

embedding

The embedding module provides classes for mapping integer indices (like token IDs) to dense vector representations. These embedding operations are fundamental building blocks for natural language processing, recommendation systems, and other tasks involving discrete tokens.

  • Embedding: Basic embedding lookup table for simple use cases
  • EmbeddingV2: Enhanced embedding with device placement control and improved memory management
  • VocabParallelEmbedding: Distributed embedding that shards the vocabulary across multiple devices for large embedding tables

Here’s an example demonstrating how to use embeddings:

import max.nn as nn
from max.graph import Graph, ops, DeviceRef
from max.dtype import DType
import numpy as np

with Graph(name="embedding_example") as graph:
# Define dimensions
batch_size = 4
seq_length = 16
vocab_size = 10000
hidden_dim = 256

# Create input tensor of token indices
input_data = np.random.randint(0, vocab_size, (batch_size, seq_length), dtype=np.int32)
input_indices = ops.constant(input_data, dtype=DType.int32)

# Create embedding layer
embedding = nn.EmbeddingV2(
vocab_size=vocab_size,
hidden_dim=hidden_dim,
dtype=DType.float32,
device=DeviceRef.GPU(),
name="token_embeddings"
)

# Look up embeddings for input indices
embeddings = embedding(input_indices)
print(f"Embedding output shape: {embeddings.shape}")
# Embedding output shape: [Dim(4), Dim(16), Dim(256)]
import max.nn as nn
from max.graph import Graph, ops, DeviceRef
from max.dtype import DType
import numpy as np

with Graph(name="embedding_example") as graph:
# Define dimensions
batch_size = 4
seq_length = 16
vocab_size = 10000
hidden_dim = 256

# Create input tensor of token indices
input_data = np.random.randint(0, vocab_size, (batch_size, seq_length), dtype=np.int32)
input_indices = ops.constant(input_data, dtype=DType.int32)

# Create embedding layer
embedding = nn.EmbeddingV2(
vocab_size=vocab_size,
hidden_dim=hidden_dim,
dtype=DType.float32,
device=DeviceRef.GPU(),
name="token_embeddings"
)

# Look up embeddings for input indices
embeddings = embedding(input_indices)
print(f"Embedding output shape: {embeddings.shape}")
# Embedding output shape: [Dim(4), Dim(16), Dim(256)]

Embedding

class max.nn.embedding.Embedding(weights: 'TensorValueLike')

weights

weights*: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray*

EmbeddingV2

class max.nn.embedding.EmbeddingV2(vocab_size: int, hidden_dim: int, dtype: DType, device: DeviceRef | None = None, quantization_encoding: QuantizationEncoding | None = None, name: str | None = None)

A lookup table for embedding integer indices into dense vectors.

This layer maps each integer index to a dense vector of fixed size. Embedding weights are stored on the CPU but are moved to the specified device during the model init phase.

Example:

embedding_layer = EmbeddingV2(
vocab_size=1000,
hidden_dim=256,
dtype=DType.float32,
device=DeviceRef.GPU(),
name="embeddings",
)

token_indices: TensorValueLike
embeddings = embedding_layer(token_indices)
embedding_layer = EmbeddingV2(
vocab_size=1000,
hidden_dim=256,
dtype=DType.float32,
device=DeviceRef.GPU(),
name="embeddings",
)

token_indices: TensorValueLike
embeddings = embedding_layer(token_indices)

Initializes the embedding layer with the given arguments.

  • Parameters:

    • vocab_size – The number of unique items in the vocabulary. Indices must be in the range [0, vocab_size).
    • hidden_dim – The dimensionality of each embedding vector.
    • dtype – The data type of the embedding weights.
    • device – The device where embedding lookups are executed. Model init transfers the initially CPU-resident weights to this device.
    • name – The name identifier for the embedding weight matrix.

device

device*: DeviceRef | None*

The device on which embedding lookup is performed.

weight

weight*: Weight*

The embedding weight matrix stored on the CPU. Model init moves weights to the device specified in device.

VocabParallelEmbedding

class max.nn.embedding.VocabParallelEmbedding(vocab_size: int, hidden_dim: int, dtype: DType, devices: list[max.graph.type.DeviceRef], quantization_encoding: QuantizationEncoding | None = None, name: str | None = None)

A lookup table for embedding integer indices into dense vectors.

This layer works like nn.Embedding except the embedding table is sharded on the vocabulary dimension across all devices.

Example:

embedding_layer = VocabParallelEmbedding(
vocab_size=1000,
hidden_dim=256,
dtype=DType.float32,
device=[DeviceRef.GPU(0), DeviceRef.GPU(1)],
name="embeddings",
)

# Token indices of shape: [batch, ..., num_indices].
token_indices: TensorValueLike
embeddings = embedding_layer(token_indices)
embedding_layer = VocabParallelEmbedding(
vocab_size=1000,
hidden_dim=256,
dtype=DType.float32,
device=[DeviceRef.GPU(0), DeviceRef.GPU(1)],
name="embeddings",
)

# Token indices of shape: [batch, ..., num_indices].
token_indices: TensorValueLike
embeddings = embedding_layer(token_indices)
  • Parameters:

    • vocab_size – The number of unique items in the vocabulary. Indices must be in the range [0, vocab_size).
    • hidden_dim – The dimensionality of each embedding vector.
    • dtype – The data type of the embedding weights.
    • devices – The devices where embedding lookups are executed. Model init transfers the initially CPU-resident weights to this device.
    • name – The name identifier for the embedding weight matrix.