Skip to main content
Log in

Mojo function

sum

sum[axis: Int](inp: LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_bitwidth=layout_bitwidth, masked=masked, alignment=alignment], out: LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_bitwidth=layout_bitwidth, masked=masked, alignment=alignment])

Computes sum reduction along specified axis.

Reduces the input tensor by summing elements along the specified axis and stores the result in the output tensor.

Example:

from layout import LayoutTensor, Layout
from layout.math import sum

data = InlineArray[Int32, 6](0, 1, 2, 3, 4, 5)
tensor = LayoutTensor[DType.int32, Layout.row_major(2, 3)](data)
print(tensor)
print("-----")
print(sum[0](tensor))
from layout import LayoutTensor, Layout
from layout.math import sum

data = InlineArray[Int32, 6](0, 1, 2, 3, 4, 5)
tensor = LayoutTensor[DType.int32, Layout.row_major(2, 3)](data)
print(tensor)
print("-----")
print(sum[0](tensor))

Output:

0 1 2
3 4 5
-----
3 5 7
0 1 2
3 4 5
-----
3 5 7

.

Constraints:

All tensors must have statically known shapes. out.rank must equal inp.rank - 1. Non-reduction dimensions must match between inp and out. Currently only supports rank-2 inputs.

Parameters:

  • axis (Int): The axis to sum along.

Args:

  • inp (LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_bitwidth=layout_bitwidth, masked=masked, alignment=alignment]): The input tensor to sum.
  • out (LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_bitwidth=layout_bitwidth, masked=masked, alignment=alignment]): The output tensor to store sum results.

sum[axis: Int](inp: LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_bitwidth=layout_bitwidth, masked=masked, alignment=alignment]) -> LayoutTensor[dtype, _reduce_res_row_major_shape(axis, layout), MutableAnyOrigin, address_space=address_space, element_layout=element_layout, layout_bitwidth=layout_bitwidth]

Computes sum reduction along specified axis, returning a new tensor.

Reduces the input tensor by summing elements along the specified axis and returns a new tensor with the results.

Constraints:

All tensors must have statically known shapes. Result will have rank equal to inp.rank - 1. Non-reduction dimensions in the result match the input. Currently only supports rank-2 inputs.

Parameters:

  • axis (Int): The axis to sum along.

Args:

  • inp (LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_bitwidth=layout_bitwidth, masked=masked, alignment=alignment]): The input tensor to sum.

Returns:

A new tensor containing the sum values along the specified axis.