Mojo function
fused_token_sampling_cpu
fused_token_sampling_cpu[dtype: DType, out_idx_type: DType, KLayoutType: TensorLayout = Layout[RuntimeInt[DType.int64], ComptimeInt[1]], TemperatureLayoutType: TensorLayout = Layout[RuntimeInt[DType.int64], ComptimeInt[1]], TopPLayoutType: TensorLayout = Layout[RuntimeInt[DType.int64], ComptimeInt[1]], SeedLayoutType: TensorLayout = Layout[RuntimeInt[DType.int64], ComptimeInt[1]]](max_k: Int, input: TileTensor[dtype, LayoutType, origin, address_space=address_space, linear_idx_type=linear_idx_type, element_shape_types=element_shape_types], out_idxs: TileTensor[out_idx_type, LayoutType, origin, address_space=address_space, linear_idx_type=linear_idx_type, element_shape_types=element_shape_types], k: Optional[TileTensor[DType.int64, KLayoutType, ImmutAnyOrigin]] = None, temperature: Optional[TileTensor[DType.float32, TemperatureLayoutType, ImmutAnyOrigin]] = None, top_p: Optional[TileTensor[DType.float32, TopPLayoutType, ImmutAnyOrigin]] = None, seed: Optional[TileTensor[DType.uint64, SeedLayoutType, ImmutAnyOrigin]] = None)
Generalized implementation of the Top K algorithm with sampling. Returns the sampled index from the innermost dimension of the input tensor for each row/subvolume.
Parameters:
- dtype (
DType): Data type of the input buffer. - out_idx_type (
DType): Data type of the output indices. - KLayoutType (
TensorLayout): Layout type of the k buffer. - TemperatureLayoutType (
TensorLayout): Layout type of the temperature buffer. - TopPLayoutType (
TensorLayout): Layout type of the top_p buffer. - SeedLayoutType (
TensorLayout): Layout type of the seed buffer.
Args:
- max_k (
Int): Largest number of top elements. - input (
TileTensor): NDBuffer[dtype, rank] (Any shape)- The input tensor. - out_idxs (
TileTensor): NDBuffer[out_idx_type, rank] (shape of [input_shape[:-1]] + [1]) - The output indices. - k (
Optional): Optional device buffer of top elements to keep for each batch element. - temperature (
Optional): The temperature based scaling. - top_p (
Optional): Only use the tokens whose cumulative probability exceeds this threshold. - seed (
Optional): The seed to use for the random number generator.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!