Skip to main content

Mojo function

tile

tile[type: DType, type_repeats: DType](input: LayoutTensor[type, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], repeats: LayoutTensor[type_repeats, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], output: LayoutTensor[type, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment])

Implements the Tile operator from the ONNX spec. This behaves like Numpy tile, but without broadcast.

Parameters:

  • type (DType): Type of the input and output tensors.
  • type_repeats (DType): Type of the repeats tensor.

Args:

  • input (LayoutTensor[type, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment]): The input tensor. Currently <= 4 dimensions are supported.
  • repeats (LayoutTensor[type_repeats, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment]): One-dimensional tensor that specifies the number of repeated copies along each of the input's dimensions. Length equals input tensor rank.
  • output (LayoutTensor[type, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment]): The output tensor. Has the same dimensions and type as input.

Was this page helpful?