Mojo function
roi_align_nhwc
roi_align_nhwc[type: DType, input_shape: DimList, roi_shape: DimList, //, aligned: Bool, mode: StringSlice[StaticConstantOrigin] = __init__[__mlir_type.!kgen.string]("AVG")](output: NDBuffer[type, 4, origin, shape, strides], input: NDBuffer[type, 4, origin, input_shape, strides], rois: NDBuffer[type, 2, origin, roi_shape, strides], output_height: Int, output_width: Int, in_spatial_scale: SIMD[dtype, 1], in_sampling_ratio: SIMD[dtype, 1])
Compute ROIAlign a batch of rois of shape [M, 5] where the first dim is the batch index, followed by region box coordinates (y0, x0) (y1, x1). For inputs of NHWC format. The output shape is [M, output_height, output_width, C].
Paramerers: type: Type of the input tensor. input_shape: Shape of the input tensor. roi_shape: Shape of regions of interests (ROI). aligned: If not true offset the ROIs by 0.5. mode: The pooling mode "AVG" for average and "MAX" for max pooling.
Args:
- output (
NDBuffer[type, 4, origin, shape, strides]
): Pre-allocated output tensor. - input (
NDBuffer[type, 4, origin, input_shape, strides]
): Batched images to the roi_align with NHWC format. - rois (
NDBuffer[type, 2, origin, roi_shape, strides]
): Batched ROIs box coordinates. - output_height (
Int
): Pooled output height. - output_width (
Int
): Pooled output width. - in_spatial_scale (
SIMD[dtype, 1]
): Scale factor to remap the roi_align coordinates to the input coordinates. - in_sampling_ratio (
SIMD[dtype, 1]
): Number of sampling points in the interpolation grid used to compute the output value of each pooled bin.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!