Mojo function
pool_shape_impl
pool_shape_impl[input_type: DType, filter_type: DType, strides_type: DType, dilations_type: DType, paddings_type: DType, single_thread_blocking_override: Bool, ceil_mode: Bool](input_buf: LayoutTensor[input_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], filter_buf: LayoutTensor[filter_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], strides_buf: LayoutTensor[strides_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], dilations_buf: LayoutTensor[dilations_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], paddings_buf: LayoutTensor[paddings_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment]) -> IndexList[layout.rank()]
Compute the output shape of a pooling operation, and assert the inputs are compatible. Works for 2D pool operations only in the NHWC format.
Parameters:
- input_type (
DType
): Type of the input tensor. - filter_type (
DType
): Type of the filter tensor. - strides_type (
DType
): Type of the strides tensor. - dilations_type (
DType
): Type of the dilations tensor. - paddings_type (
DType
): Type of the paddings tensor. - single_thread_blocking_override (
Bool
): If True, then the operation is run synchronously using a single thread. - ceil_mode (
Bool
): Define rounding mode for shape calculation.
Args:
- input_buf (
LayoutTensor[input_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment]
): The input tensor. - filter_buf (
LayoutTensor[filter_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment]
): The filter size buffer. - strides_buf (
LayoutTensor[strides_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment]
): The strides size buffer. - dilations_buf (
LayoutTensor[dilations_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment]
): The dilations size buffer. - paddings_buf (
LayoutTensor[paddings_type, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment]
): The paddings size buffer.
Returns:
The output shape.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!