Skip to main content

Mojo function

max_pool_cpu

max_pool_cpu[dtype: DType, int_type: DType](input: TileTensor[dtype, origin, address_space=address_space, linear_idx_type=linear_idx_type, element_shape_types=element_shape_types], filter: TileTensor[int_type, origin, address_space=address_space, linear_idx_type=linear_idx_type, element_shape_types=element_shape_types], strides: TileTensor[int_type, origin, address_space=address_space, linear_idx_type=linear_idx_type, element_shape_types=element_shape_types], dilations: TileTensor[int_type, origin, address_space=address_space, linear_idx_type=linear_idx_type, element_shape_types=element_shape_types], paddings: TileTensor[int_type, origin, address_space=address_space, linear_idx_type=linear_idx_type, element_shape_types=element_shape_types], output: TileTensor[dtype, origin, address_space=address_space, linear_idx_type=linear_idx_type, element_shape_types=element_shape_types], ceil_mode: Bool = False)

Computes fp32 pooling.

Args:

  • input (TileTensor): Batched image input to the pool2d operator.
  • filter (TileTensor): Filter size on height and width dimensions with assumed tuple def (filter_h, filter_w).
  • strides (TileTensor): Strides on height and width dimensions with assumed tuple def (stride_h, stride_w).
  • dilations (TileTensor): Dilations on height and width dimensions with assumed tuple def (dilation_h, dilation_w).
  • paddings (TileTensor): Paddings on height and width dimensions with assumed tuple def (pad_h_before, pad_h_after, pad_w_before, pad_w_after)).
  • output (TileTensor): Pre-allocated output tensor space.
  • ceil_mode (Bool): Ceiling mode defines the output shape and implicit padding.

Was this page helpful?