Mojo function
layer_norm_shape
layer_norm_shape[dtype: DType, single_thread_blocking_override: Bool](input: LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], gamma: LayoutTensor[dtype, Layout.row_major(1), origin], beta: LayoutTensor[dtype, Layout.row_major(1), origin], epsilon: Scalar[dtype]) -> IndexList[LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment].rank]
Compute the output shape of a layer_norm operation.
Parameters:
- dtype (
DType): Type of the input tensors. - single_thread_blocking_override (
Bool): If True, then the operation is run synchronously using a single thread. 
Args:
- input (
LayoutTensor): The input tensor. - gamma (
LayoutTensor): The tensor for gamma coefficient. - beta (
LayoutTensor): The tensor for beta coefficient. - epsilon (
Scalar): The tensor for epsilon coefficient. 
Returns:
IndexList: The output shape.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!