Mojo function
mla_decode_branch_fp8
mla_decode_branch_fp8[dtype: DType, fp8_dtype: DType, fp8_scale_dtype: DType, collection_t: KVCollectionT, //, m_scale_granularity: Int, n_scale_granularity: Int, k_scale_granularity: Int, mask_str: StringSlice[StaticConstantOrigin], score_mod_str: StringSlice[StaticConstantOrigin], target: StringSlice[StaticConstantOrigin] = "cpu"](output: LayoutTensor[dtype, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], q_nope: LayoutTensor[dtype, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], q_rope: LayoutTensor[dtype, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], input_row_offsets: LayoutTensor[DType.uint32, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], kv_collection: collection_t, layer_idx: UInt32, scale: Float32, w_uk: LayoutTensor[fp8_dtype, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], w_uk_scale: LayoutTensor[fp8_scale_dtype, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], w_uv: LayoutTensor[fp8_dtype, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], w_uv_scale: LayoutTensor[fp8_scale_dtype, layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], ctx: DeviceContext)
This is a manually fused kernel that performs the following operations: - Project q_nope to kv_latent_dim through a fp8 batched matmul: q_nope_proj = q_nope_t @ w_uk. - Concatenate q_nope_proj and q_rope: q_full = concat(q_nope_proj, q_rope, axis=2). - Perform MLA decode. - Project raw_output to v_head_dim through another fp8 batched matmul: output = raw_output_t @ w_uv.
Parameters:
- dtype (
DType): Data type of the input and output tensors. - fp8_dtype (
DType): Data type of the fp8 input and output tensors. - fp8_scale_dtype (
DType): Data type of the fp8 scale input and output tensors. - collection_t (
KVCollectionT): Type of the KV collection. - m_scale_granularity (
Int): Granularity of the scale for M dimension of the matrix multiplication. - n_scale_granularity (
Int): Granularity of the scale for N dimension of the matrix multiplication. - k_scale_granularity (
Int): Granularity of the scale for K dimension of the matrix multiplication. - mask_str (
StringSlice): Mask variant. - score_mod_str (
StringSlice): Positional encoding variant. - target (
StringSlice): Target device.
Args:
- output (
LayoutTensor): Output tensor of shape [tot_seq_len, num_heads, v_head_dim]. - q_nope (
LayoutTensor): Query tensor of shape [tot_seq_len, num_heads, qk_nope_head_dim]. - q_rope (
LayoutTensor): Rope query tensor of shape [tot_seq_len, num_heads, qk_rope_head_dim]. - input_row_offsets (
LayoutTensor): Indicates where each request starts and ends inq. Shape: [num_batches + 1]. - kv_collection (
collection_t): Paged KV Cache object. - layer_idx (
UInt32): Layer index. - scale (
Float32): Scale for the attention calculation. - w_uk (
LayoutTensor): Weight matrix for projecting the non-rope part of each query head to KV latent space. Shape: [num_heads, kv_latent_dim, qk_nope_head_dim]. - w_uk_scale (
LayoutTensor): The scale for the w_uk weight matrix. Shape varies depending on the float8_config. - w_uv (
LayoutTensor): Weight matrix for projecting the output of the attention back to each head's original space. Shape: [num_heads, v_head_dim, kv_latent_dim]. - w_uv_scale (
LayoutTensor): The scale for the w_uv weight matrix. Shape varies depending on the float8_config. - ctx (
DeviceContext): Device context.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!