Skip to main content

Mojo function

conv_transposed_gpu

conv_transposed_gpu[input_layout: Layout, filter_layout: Layout, output_layout: Layout, input_type: DType, filter_type: DType, output_type: DType, elementwise_epilogue: OptionalReg[fn[DType, Int, Int](IndexList[$1], SIMD[$0, $2]) capturing -> None] = OptionalReg[fn[DType, Int, Int](IndexList[$1], SIMD[$0, $2]) capturing -> None]({:i1 0, 1})](output: LayoutTensor[output_type, output_layout, origin, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], input: LayoutTensor[input_type, input_layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], filter: LayoutTensor[filter_type, filter_layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], stride: IndexList[(input_layout.rank() + -2)], dilation: IndexList[(input_layout.rank() + -2)], padding: IndexList[(input_layout.rank() + -2)], ctx: DeviceContext)

Was this page helpful?