Mojo function
conv_shape
conv_shape[input_rank: Int, filter_rank: Int, input_type: DType, filter_type: DType, strides_type: DType, dilations_type: DType, paddings_type: DType, single_thread_blocking_override: Bool](input_buf: NDBuffer[input_type, input_rank, origin], filter_buf: NDBuffer[filter_type, filter_rank, origin], strides_buf: NDBuffer[strides_type, 1, origin], dilations_buf: NDBuffer[dilations_type, 1, origin], paddings_buf: NDBuffer[paddings_type, 1, origin], num_groups_scalar: SIMD[dtype, 1]) -> Index[input_rank]
Compute the output shape of a conv
operation, and assert the inputs are compatible.
Parameters:
- input_rank (
Int
): Rank of the input tensor. - filter_rank (
Int
): Rank of the filter tensor. - input_type (
DType
): Type of the input tensor. - filter_type (
DType
): Type of the filter tensor. - strides_type (
DType
): Type of the strides tensor. - dilations_type (
DType
): Type of the dilations tensor. - paddings_type (
DType
): Type of the paddings tensor. - single_thread_blocking_override (
Bool
): If True, then the operation is run ssynchronouslysing a single thread.
Args:
- input_buf (
NDBuffer[input_type, input_rank, origin]
): The input tensor. - filter_buf (
NDBuffer[filter_type, filter_rank, origin]
): The filter tensor. - strides_buf (
NDBuffer[strides_type, 1, origin]
): The strides tensor. - dilations_buf (
NDBuffer[dilations_type, 1, origin]
): The dilations tensor. - paddings_buf (
NDBuffer[paddings_type, 1, origin]
): The paddings tensor. - num_groups_scalar (
SIMD[dtype, 1]
): The num_groups scalar.
Returns:
The output shape.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!