Mojo struct
TileScheduler
@register_passable(trivial)
struct TileScheduler[num_stages: Int, cluster_shape: IndexList[3, element_type=DType.uint32] = Index[dtype=DType.uint32](1, 1, 1), rasterize_order: RasterOrder = RasterOrder(1), block_swizzle_size: Int = 8]
Fields
- cluster_dim (
StaticTuple[Int32, 3]
): - log_cluster_dim_m (
FastDiv[DType.uint32]
): - log_cluster_dim_n (
FastDiv[DType.uint32]
): - log_cluster_dim_k (
FastDiv[DType.uint32]
): - clc_response (
UnsafePointer[UInt128, address_space=AddressSpace(3)]
): - full_mbar (
UnsafePointer[SharedMemBarrier, address_space=AddressSpace(3)]
): - empty_mbar (
UnsafePointer[SharedMemBarrier, address_space=AddressSpace(3)]
):
Implemented traits
AnyType
,
Copyable
,
ImplicitlyCopyable
,
Movable
,
UnknownDestructibility
Aliases
__copyinit__is_trivial
alias __copyinit__is_trivial = True
__del__is_trivial
alias __del__is_trivial = True
__moveinit__is_trivial
alias __moveinit__is_trivial = True
cluster_size
alias cluster_size = (cluster_shape.__getitem__[3, DType.uint32, Int](2) * cluster_shape.__getitem__[3, DType.uint32, Int](0) * cluster_shape.__getitem__[3, DType.uint32, Int](1))
log_cluster_k
alias log_cluster_k = FastDiv[DType.uint32](cluster_shape.__getitem__[3, DType.uint32, Int](2))
log_cluster_m
alias log_cluster_m = FastDiv[DType.uint32](cluster_shape.__getitem__[3, DType.uint32, Int](0))
log_cluster_n
alias log_cluster_n = FastDiv[DType.uint32](cluster_shape.__getitem__[3, DType.uint32, Int](1))
Methods
__init__
__init__(cluster_dim: StaticTuple[Int32, 3], clc_response_ptr: UnsafePointer[UInt128, address_space=AddressSpace(3)], full_mbar_ptr: UnsafePointer[SharedMemBarrier, address_space=AddressSpace(3)], empty_mbar_ptr: UnsafePointer[SharedMemBarrier, address_space=AddressSpace(3)]) -> Self
work_info_from_clc_response
static work_info_from_clc_response(result: UnsafePointer[UInt128, address_space=AddressSpace(3)]) -> WorkInfo
Returns:
work_info_from_cluster
static work_info_from_cluster(work_info: WorkInfo, cluster_dim: StaticTuple[Int32, 3], log_cluster_dim_m: FastDiv[DType.uint32], log_cluster_dim_n: FastDiv[DType.uint32]) -> WorkInfo
Returns:
initial_work_info
fetch_next_work
fetch_next_work(self, work_info: WorkInfo, consumer_state: PipelineState[num_stages]) -> WorkInfo
Returns:
advance_to_next_work
advance_to_next_work(self, mut clc_state: PipelineState[num_stages]) -> PipelineState[num_stages]
Returns:
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!