Mojo struct
MMATileBuffers
struct MMATileBuffers[: DType, : DType, : IndexList[3], : Bool, : Int, : Int, : Int, : Int, : Int, : Swizzle, : Int, : Bool, : DType, : Layout, : Origin[], : AddressSpace, : Layout, : DType, : DType, : Bool, : Int, tensor_origin: ImmutableOrigin, //, smem_layout: Layout, /, tensor_type: AnyStruct[LayoutTensor[, , , address_space=, element_layout=, layout_int_type=, linear_idx_type=, masked=, alignment=]], thread_layout: Layout, block_rows: Int, warp_rows: Int, stride: Int, num_mmas: Int, mma_type: AnyStruct[AMD_MMA[, , , , , , , , , , ]]]
Manages memory for a single matrix (A or B) in GEMM computation.
This struct encapsulates all memory handling for a matrix, including:
- Shared memory allocation and tiling
- Register buffer allocation
- Data movement between memory levels (DRAM→local→shared)
Fields
- shared_mem_tile (
LayoutTensor[in_type, smem_layout, MutableAnyOrigin, address_space=AddressSpace(3), alignment=alignof[::AnyType,__mlir_type.!kgen.target]()]
): - shared_mem_warp_tile (
LayoutTensor[in_type, _compute_tile_layout[*::Int]()[0], MutableAnyOrigin, address_space=AddressSpace(3), layout_int_type=_get_layout_type(smem_layout, AddressSpace(3)), linear_idx_type=_get_index_type(smem_layout, AddressSpace(3)), masked=_tile_is_masked[::Layout,*::Int](), alignment=alignof[::AnyType,__mlir_type.!kgen.target]()]
): - load_reg_tile (
LayoutTensor[in_type, row_major((num_k_tiles * num_mmas), simd_width), MutableAnyOrigin, address_space=AddressSpace(5), alignment=alignof[::AnyType,__mlir_type.!kgen.target]()]
): - mma_reg_tile (
StaticTuple[LayoutTensor[in_type, _compute_tile_layout[::Int,::Int]()[0], MutableAnyOrigin, address_space=AddressSpace(5), alignment=alignof[::AnyType,__mlir_type.!kgen.target]()], num_k_tiles]
): - gmem_iter (
LayoutTensorIter[dtype, _compute_tile_layout[*::Int]()[0], origin, address_space=address_space, axis=OptionalReg[Int]({:@stdlib::@builtin::@int::@Int {1}, 0}), layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked if masked else _tile_is_masked[::Layout,*::Int]() if masked if masked else _tile_is_masked[::Layout,*::Int]() else _tile_is_masked[::Layout,*::Int]()]
): - global_offset (
UInt
): - tensor (
Pointer[tensor_type, tensor_origin]
):
Implemented traits
AnyType
,
UnknownDestructibility
Aliases
iter_type
alias iter_type = LayoutTensorIter[dtype, _compute_tile_layout[*::Int]()[0], origin, address_space=address_space, axis=OptionalReg[Int]({:@stdlib::@builtin::@int::@Int {1}, 0}), layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked if masked else _tile_is_masked[::Layout,*::Int]() if masked if masked else _tile_is_masked[::Layout,*::Int]() else _tile_is_masked[::Layout,*::Int]()]
MMARegTileType
alias MMARegTileType = LayoutTensor[in_type, row_major((num_k_tiles * num_mmas), simd_width), MutableAnyOrigin, address_space=AddressSpace(5), alignment=alignof[::AnyType,__mlir_type.!kgen.target]()]
SharedMemTileType
alias SharedMemTileType = LayoutTensor[in_type, smem_layout, MutableAnyOrigin, address_space=AddressSpace(3), alignment=alignof[::AnyType,__mlir_type.!kgen.target]()]
Methods
__init__
__init__(out self, ref [tensor_origin] tensor: LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], warp_idx: Int, block_idx: Int)
Initialize memory regions for a matrix based on warp coordinates.
Args:
- tensor (
LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment]
): The tensor to load from global memory. - warp_idx (
Int
): The warp index within the computation grid (used for MMA operations). - block_idx (
Int
): The block index within the computation grid (used for warp tiling).
copy_to_shared
copy_to_shared(self)
Copy data from thread-local memory to shared memory.
Uses structured thread cooperation to efficiently transfer data.
load_from_dram
load_from_dram(mut self)
Load data from global memory (DRAM) to thread-local memory.
get_reg_tile
get_reg_tile[k_tile_idx: Int](self) -> LayoutTensor[in_type, _compute_tile_layout[::Int,::Int]()[0], MutableAnyOrigin, address_space=AddressSpace(5), alignment=alignof[::AnyType,__mlir_type.!kgen.target]()]
Get a specific K-dimension tile from the register buffer.
Parameters:
- k_tile_idx (
Int
): The K-dimension tile index.
Returns:
A tile view for the specified location in the register buffer.
load_tile_from_shared
load_tile_from_shared[k_tile_idx: Int, is_a: Bool](self)
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!