Skip to main content

Mojo struct

TileWriter

@register_passable(trivial) struct TileWriter[tma_origin: ImmutOrigin, c_type: DType, c_layout: Layout, c_desc_layout: Layout, //, a_type: DType, accum_type: DType, block_tile_shape: IndexList[3], mma_shape: IndexList[3], cta_group: Int, num_accum_pipeline_stages: Int, c_swizzle: TensorMapSwizzle, transpose_c: Bool, c_smem_dim0: Int, c_smem_dim1: Int, num_output_stages: Int, stage_stride_cols: Int, num_output_warps: Int, elementwise_compute_lambda_fn: Optional[elementwise_compute_lambda_type] = None, register_based_epilogue: Bool = True, batched: Bool = False]

Output tile writer for SM100 matmul epilogue.

Stores pointer to TMA descriptor. SMEM tiles passed per-call.

Parameters are passed explicitly to work with both MatmulConfig and BlockScaledMatmulConfig.

The stage_stride_cols parameter must match the value used when constructing the OutputTilePipeline that provides OutputStage instances to the write() method.

Fields

  • c_tma_op (TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].TmaOpPtr):

Implemented traits

AnyType, Copyable, ImplicitlyCopyable, ImplicitlyDestructible, Movable, RegisterPassable, TrivialRegisterPassable

comptime members

__copyinit__is_trivial

comptime __copyinit__is_trivial = True

__del__is_trivial

comptime __del__is_trivial = True

__moveinit__is_trivial

comptime __moveinit__is_trivial = True

accum_tile_layout

comptime accum_tile_layout = Layout.row_major(TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].BM, TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].stageN)

AccumTmemArray

comptime AccumTmemArray = TmemArrayType[accum_type, TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].accum_tile_layout, TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].num_stages, cta_group=cta_group]

bits

comptime bits = 256

BM

comptime BM = block_tile_shape.__getitem__[Int](0)

BN

comptime BN = block_tile_shape.__getitem__[Int](1)

c_smem_layout

comptime c_smem_layout = Layout.row_major(c_smem_dim0, c_smem_dim1)

cg1_num_stages

comptime cg1_num_stages = (TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].MMA_N // TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].stageN)

cg2_num_stages

comptime cg2_num_stages = (mma_shape.__getitem__[Int](1) // c_smem_dim0 if transpose_c else c_smem_dim1) if (TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].MMA_M == 256)._mlir_value else ((TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].MMA_N // TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].stageN) // 2)

CTileArray

comptime CTileArray = SMemTileArray2DRowMajor[c_type, c_smem_dim0, c_smem_dim1, num_output_stages]

data_paths

comptime data_paths = 16

epilogue_dtype

comptime epilogue_dtype = c_type if (a_type == DType.bfloat16)._mlir_value else DType.float32

fragment_size

comptime fragment_size = (128 // WARP_SIZE)

is_lower_frag_required

comptime is_lower_frag_required = (TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].BM == 64) if (cta_group == 1)._mlir_value else (cta_group == 1).__bool__().__invert__()

MMA_M

comptime MMA_M = mma_shape.__getitem__[Int](0)

MMA_N

comptime MMA_N = mma_shape.__getitem__[Int](1)

N_dim

comptime N_dim = 0 if transpose_c else 1

num_stages

comptime num_stages = (mma_shape.__getitem__[Int](1) // c_smem_dim0 if transpose_c else c_smem_dim1) if (eq mma_shape.__getitem__[Int](0)._mlir_value, 256) else ((TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].MMA_N // TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].stageN) // 2) if (cta_group == 2)._mlir_value else TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].cg1_num_stages

rep

comptime rep = (TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].stageN // 8)

rep_frag_size

comptime rep_frag_size = (TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].rep * TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].fragment_size)

Stage

comptime Stage = OutputStage[num_accum_pipeline_stages, stage_stride_cols, cta_group]

stage_contiguous_size

comptime stage_contiguous_size = c_smem_dim1

stageN

comptime stageN = c_smem_dim0 if transpose_c else c_smem_dim1

TmaOp

comptime TmaOp = TMATensorTile[c_type, c_layout, c_desc_layout]

TmaOpPtr

comptime TmaOpPtr = Pointer[TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].TmaOp, tma_origin]

Methods

__init__

__init__(c_tma_op: Pointer[TileWriter[a_type, accum_type, block_tile_shape, mma_shape, cta_group, num_accum_pipeline_stages, c_swizzle, transpose_c, c_smem_dim0, c_smem_dim1, num_output_stages, stage_stride_cols, num_output_warps, elementwise_compute_lambda_fn, register_based_epilogue, batched].TmaOp, tma_origin]) -> Self

Initialize with pointer to TMA descriptor.

write

write(self, c_tiles: SMemTileArray2DRowMajor[c_type, c_smem_dim0, c_smem_dim1, num_output_stages], stage: OutputStage[num_accum_pipeline_stages, stage_stride_cols, cta_group], tile_coord: Tuple[UInt32, UInt32], shape: Tuple[UInt32, UInt32], elect_one_warp: Bool)

Write accumulated results to global memory (2D coords).

write_batched

write_batched(self, c_tiles: SMemTileArray2DRowMajor[c_type, c_smem_dim0, c_smem_dim1, num_output_stages], stage: OutputStage[num_accum_pipeline_stages, stage_stride_cols, cta_group], tile_coord: Tuple[UInt32, UInt32, UInt32], shape: Tuple[UInt32, UInt32], alpha: Float32 = 1)

Write accumulated results to global memory (3D batched coords).

Args:

  • c_tiles (SMemTileArray2DRowMajor): TileTensor-based SMEM tile array for C output.
  • stage (OutputStage): OutputStage with pipeline, index, and TMEM handle.
  • tile_coord (Tuple): (m_tile, n_tile, batch) coordinates.
  • shape (Tuple): (M, N) problem dimensions.
  • alpha (Float32): Tensor scale factor (scalar).

write_splitk

write_splitk[reduction_layout: TensorLayout](self, c_tiles: SMemTileArray2DRowMajor[c_type, c_smem_dim0, c_smem_dim1, num_output_stages], stage: OutputStage[num_accum_pipeline_stages, stage_stride_cols, cta_group], scheduler: TileScheduler[num_stages, reduction_tile_shape, cluster_shape, rasterize_order, block_swizzle_size, num_split_k], reduction_tensor: TileTensor[accum_type, reduction_layout, MutAnyOrigin], work_info: WorkInfo, shape: Tuple[UInt32, UInt32], elect_one_warp: Bool)

Write with split-K reduction. Only last split writes to GMEM.

write_absolute_with_bounds_check

write_absolute_with_bounds_check[c_tensor_layout: Layout](self, c_tiles: SMemTileArray2DRowMajor[c_type, c_smem_dim0, c_smem_dim1, num_output_stages], output_stage: OutputStage[num_accum_pipeline_stages, stage_stride_cols, cta_group], m_abs: UInt32, n_abs: UInt32, m_end: UInt32, expert_scale: Float32, c_tensor: LayoutTensor[c_type, c_tensor_layout, MutAnyOrigin])

Write with absolute coordinates and bounds checking.

For 1D-1D grouped kernels where M coordinate is absolute.

write_with_residual

write_with_residual(self, out_tiles: SMemTileArray2DRowMajor[c_type, c_smem_dim0, c_smem_dim1, num_output_stages], stage: OutputStage[num_accum_pipeline_stages, stage_stride_cols, cta_group], src_tile: SMemTileArray2DRowMajor[c_type, c_smem_dim0, c_smem_dim1, num_output_stages], src_stage_idx: UInt32, beta: Scalar[c_type], tile_coord: Tuple[UInt32, UInt32], shape: Tuple[UInt32, UInt32], elect_one_warp: Bool)

Write with residual: D = lambda(accum) + beta * C.

This method extends the standard write() to add a residual term loaded from source tensor C in shared memory. The epilogue load warp pre-fetches C tiles into src_tile before this method is called.

Pipeline:

  1. Load accum from TMEM to registers
  2. Apply epilogue lambda (if present)
  3. Load C fragment from source SMEM
  4. Compute D = accum + beta * C
  5. Write D to output SMEM and TMA store to GMEM

Args:

  • out_tiles (SMemTileArray2DRowMajor): Output SMEM tile array (for D output).
  • stage (OutputStage): OutputStage with pipeline, index, and TMEM handle.
  • src_tile (SMemTileArray2DRowMajor): Source C SMEM tile array (TileTensor-based, from epilogue load warp via smem.src_tiles()).
  • src_stage_idx (UInt32): Stage index into src_tile (0 or 1 for double-buffer).
  • beta (Scalar): Residual scale factor.
  • tile_coord (Tuple): (m_tile, n_tile) coordinates.
  • shape (Tuple): (M, N) problem dimensions.
  • elect_one_warp (Bool): Whether this warp is elected for coordination.

Was this page helpful?