Skip to main content

Mojo struct

BlackwellMatmulSM100Kernel

struct BlackwellMatmulSM100Kernel[a_type: DType, b_type: DType, c_type: DType, a_layout: Layout, b_layout: Layout, c_layout: Layout, a_desc_layout: Layout, b_desc_layout: Layout, c_desc_layout: Layout, transpose_b: Bool, config: MatmulConfig[a_type, b_type, c_type, transpose_b], cluster_shape: StaticTuple[Int32, 3] = StaticTuple[Int32, 3](1), elementwise_compute_lambda_fn: OptionalReg[fn[dtype: DType, width: Int, *, alignment: Int = 1](IndexList[2], SIMD[dtype, width]) capturing -> SIMD[dtype, width]] = None, register_based_epilogue: Bool = True, pdl_level: PDLLevel = PDLLevel(), max_profiled_tiles_per_SM: UInt32 = 0]

Blackwell SM100 GEMM kernel with warp specialization.

This struct unifies all parameters and derived types for the SM100 matmul kernel, providing:

  • Compile-time parameter validation
  • Centralized derived type computation
  • Factory methods for kernel components
  • Multiple kernel entry points (standard, split-k)

The SM100 kernel uses:

  • Tensor Memory (TMEM) for MMA accumulators
  • Cluster Launch Control (CLC) for dynamic tile scheduling
  • Warp specialization: Scheduler, TMA Load, MMA, Epilogue warps
  • Software pipelining for overlapping compute and memory operations

Implemented traits

AnyType, ImplicitlyDestructible

comptime members

__del__is_trivial

comptime __del__is_trivial = True

a_expected_bytes

comptime a_expected_bytes = (BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SmemType.a_smem_layout.size() * size_of[a_type]())

a_smem_layout

comptime a_smem_layout = tile_layout_k_major[a_type, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].BM, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].BK, config.a_swizzle]()

a_tma_load_size

comptime a_tma_load_size = a_desc_layout.size()

a_tma_rows

comptime a_tma_rows = a_desc_layout.shape[0].value()

accum_layout

comptime accum_layout = Layout.row_major(BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].MMA_M, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].MMA_N)

accum_pipeline_consumer_arv_count

comptime accum_pipeline_consumer_arv_count = (BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group * BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].EPILOGUE_THREADS)

accum_pipeline_producer_arv_count

comptime accum_pipeline_producer_arv_count = 1

accum_type

comptime accum_type = MatmulConfig[a_type, b_type, c_type, transpose_b].accum_type

AccumTensor

comptime AccumTensor = TmemTensor[BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].accum_type, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].accum_layout, cta_group=BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group]

APeerTile

comptime APeerTile = LayoutTensor[a_type, a_desc_layout, MutAnyOrigin, address_space=AddressSpace.SHARED, alignment=128]

ATileLoaderType

comptime ATileLoaderType = TileLoaderTMA[?, ?, ?, ?, cta_group=BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group]

b_expected_bytes

comptime b_expected_bytes = (BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SmemType.b_smem_layout.size() * size_of[b_type]())

b_smem_layout

comptime b_smem_layout = tile_layout_k_major[b_type, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].BN, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].BK, config.b_swizzle]() if transpose_b else tile_layout_mn_major[b_type, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].BN, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].BK, config.b_swizzle]()

b_tma_load_size

comptime b_tma_load_size = b_desc_layout.size()

b_tma_rows

comptime b_tma_rows = b_desc_layout.shape[0].value()

BK

comptime BK = config.block_tile_shape.__getitem__[3, DType.int64, Int](2)

BM

comptime BM = config.block_tile_shape.__getitem__[3, DType.int64, Int](0)

BN

comptime BN = config.block_tile_shape.__getitem__[3, DType.int64, Int](1)

BPeerTile

comptime BPeerTile = LayoutTensor[b_type, b_desc_layout, MutAnyOrigin, address_space=AddressSpace.SHARED, alignment=128]

BTileLoaderType

comptime BTileLoaderType = TileLoaderTMA[?, ?, ?, ?, cta_group=BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group]

clc_consumer_arv_count

comptime clc_consumer_arv_count = (BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SCHEDULER_THREADS + (BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].CLUSTER_SIZE * ((BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].TMA_LOAD_THREADS + BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].MMA_THREADS) + BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].EPILOGUE_THREADS)))

clc_producer_arv_count

comptime clc_producer_arv_count = 1

clc_throttle_consumer_arv_count

comptime clc_throttle_consumer_arv_count = BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SCHEDULER_THREADS

clc_throttle_producer_arv_count

comptime clc_throttle_producer_arv_count = BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].TMA_LOAD_THREADS

CLUSTER_M

comptime CLUSTER_M = config.cluster_shape.__getitem__[3, DType.int64, Int](0)

CLUSTER_N

comptime CLUSTER_N = config.cluster_shape.__getitem__[3, DType.int64, Int](1)

CLUSTER_SIZE

comptime CLUSTER_SIZE = (BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].CLUSTER_M * BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].CLUSTER_N)

Context

comptime Context = KernelContext[BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].num_clc_pipeline_stages, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].CLUSTER_M, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].CLUSTER_N]

cta_group

comptime cta_group = config.cta_group

EPILOGUE_THREADS

comptime EPILOGUE_THREADS = (4 * WARP_SIZE)

EpilogueConf

comptime EpilogueConf = EpilogueConfig[BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].MMA_M, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].MMA_N, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SmemType.c_smem_layout.shape[1].value(), BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group, False]

EpilogueCtx

comptime EpilogueCtx = EpilogueWarpContext[config.num_accum_pipeline_stages, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].stage_stride_cols, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].MMA_THREADS, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].EPILOGUE_THREADS]

input_expected_bytes

comptime input_expected_bytes = ((BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group * (BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].a_expected_bytes + BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].b_expected_bytes)) * Int.__init__[Int](config.k_group_size))

InputTilePipeline

comptime InputTilePipeline = InputTilePipeline[BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].TilePayload, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SmemType.num_group_pipeline_stages, Int.__init__[Int](config.k_group_size)]

max_tmem_cols

comptime max_tmem_cols = 512

MMA_K

comptime MMA_K = config.mma_shape.__getitem__[3, DType.int64, Int](2)

MMA_M

comptime MMA_M = config.mma_shape.__getitem__[3, DType.int64, Int](0)

MMA_N

comptime MMA_N = config.mma_shape.__getitem__[3, DType.int64, Int](1)

MMA_THREADS

comptime MMA_THREADS = WARP_SIZE

MmaCtx

comptime MmaCtx = MmaWarpContext[config.num_accum_pipeline_stages, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].stage_stride_cols, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].MMA_THREADS, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].EPILOGUE_THREADS]

MmaEpilogueSync

comptime MmaEpilogueSync = WarpGroupBarrier[(BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].MMA_THREADS + BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].EPILOGUE_THREADS), 1]

MmaOp

comptime MmaOp = MmaOpSM100_SS[c_type, a_type, b_type, config.block_tile_shape, config.mma_shape, accum_type=BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].accum_type, cta_group=BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group, cluster_shape=config.cluster_shape, a_swizzle=config.a_swizzle, b_swizzle=config.b_swizzle, transpose_b=transpose_b]

num_accum_pipeline_stages

comptime num_accum_pipeline_stages = config.num_accum_pipeline_stages

num_clc_pipeline_stages

comptime num_clc_pipeline_stages = config.num_clc_pipeline_stages

num_group_pipeline_stages

comptime num_group_pipeline_stages = (BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].num_pipeline_stages // Int.__init__[Int](config.k_group_size))

num_k_mmas

comptime num_k_mmas = (BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].BK // BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].MMA_K)

num_m_mmas

comptime num_m_mmas = (BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].BM // (BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].MMA_M // BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group))

num_n_mmas

comptime num_n_mmas = (BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].BN // (BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].MMA_N // BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group))

num_output_stages

comptime num_output_stages = Int(config)

num_output_warps

comptime num_output_warps = 4

num_pipeline_stages

comptime num_pipeline_stages = Int.__init__[Int](config.num_pipeline_stages)

NUM_THREADS

comptime NUM_THREADS = (((BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SCHEDULER_THREADS + BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].TMA_LOAD_THREADS) + BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].MMA_THREADS) + BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].EPILOGUE_THREADS)

NUM_TMEM_COLS

comptime NUM_TMEM_COLS = 512

OutputM

comptime OutputM = config.output_tile_shape.__getitem__[2, DType.int64, Int](0)

OutputN

comptime OutputN = config.output_tile_shape.__getitem__[2, DType.int64, Int](1)

OutputPipeline

comptime OutputPipeline = OutputTilePipeline[config.num_accum_pipeline_stages, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].stage_stride_cols, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group]

Scheduler

comptime Scheduler = TileScheduler[BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].num_clc_pipeline_stages, Index[dtype=DType.uint32](config.cluster_shape.__getitem__[3, DType.int64, Int](0), config.cluster_shape.__getitem__[3, DType.int64, Int](1), config.cluster_shape.__getitem__[3, DType.int64, Int](2)), config.raster_order, config.block_swizzle_size]

SCHEDULER_THREADS

comptime SCHEDULER_THREADS = WARP_SIZE

SmemType

comptime SmemType = B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config]

stage_stride_cols

comptime stage_stride_cols = (512 // BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].num_accum_pipeline_stages)

TilePayload

comptime TilePayload = StandardTilePayload[a_type, b_type, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SmemType.a_smem_layout, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SmemType.b_smem_layout, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SmemType.num_pipeline_stages]

TileWriterType

comptime TileWriterType = TileWriter[a_type, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].accum_type, config.block_tile_shape, config.mma_shape, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group, config.num_accum_pipeline_stages, config.c_swizzle, config.AB_swapped, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SmemType.c_smem_layout, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SmemType.num_output_stages, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].stage_stride_cols, 4, elementwise_compute_lambda_fn=elementwise_compute_lambda_fn, register_based_epilogue=register_based_epilogue]

TMA_LOAD_THREADS

comptime TMA_LOAD_THREADS = WARP_SIZE

Tmem

comptime Tmem = TmemAllocation[BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group]

TmemDealloc

comptime TmemDealloc = TmemDeallocBarrier[BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group]

Methods

validate_constraints

static validate_constraints()

Validate parameter constraints at compile time.

init_barriers

static init_barriers(ctx: KernelContext[BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].num_clc_pipeline_stages, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].CLUSTER_M, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].CLUSTER_N], a_tma_op: TMATensorTile[a_type, a_layout, a_desc_layout], b_tma_op: TMATensorTile[b_type, b_layout, b_desc_layout], c_tma_op: TMATensorTile[c_type, c_layout, c_desc_layout], input_barriers: SMemArrayType[SharedMemBarrier, (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_group_pipeline_stages * 2)], accum_barriers: SMemArrayType[SharedMemBarrier, (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_accum_pipeline_stages * 2)], clc_throttle: SMemArrayType[SharedMemBarrier, (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_clc_pipeline_stages * 2)], clc_full: SMemArrayType[SharedMemBarrier, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_clc_pipeline_stages], clc_empty: SMemArrayType[SharedMemBarrier, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_clc_pipeline_stages], tmem_dealloc: SMemArrayType[SharedMemBarrier, 1])

Initialize barriers and prefetch TMA descriptors. Called by elect_one_warp && elect_one_thread.

mma

static mma[tiles_origin: MutOrigin, //](tmem_stage: TmemStage[config.num_accum_pipeline_stages, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].stage_stride_cols, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group], tiles: InputConsumerStage[tiles_origin, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].TilePayload, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SmemType.num_group_pipeline_stages, Int.__init__[Int](config.k_group_size)], mma_op: MmaOpSM100_SS[c_type, a_type, b_type, block_tile_shape, mma_shape, accum_type=accum_type, cta_group=cta_group, cluster_shape=cluster_shape, a_swizzle=a_swizzle, b_swizzle=b_swizzle, transpose_b=transpose_b], elect_one_warp: Bool, iter_idx: UInt32, k_start: UInt32)

Execute MMA operations for one pipeline stage.

This is the core MMA function designed to be called within a consumer stage context:

with consumer.acquire() as tiles:
    Self.mma(stage.tmem, tiles, mma_op, ...)

Args:

  • tmem_stage (TmemStage): TMEM stage for accumulators.
  • tiles (InputConsumerStage): InputConsumerStage context with encapsulated tile access.
  • mma_op (MmaOpSM100_SS): The MMA operation instance.
  • elect_one_warp (Bool): Whether this warp should execute.
  • iter_idx (UInt32): K iteration index.
  • k_start (UInt32): Starting K iteration (for init_c determination).

load_input_tiles

static load_input_tiles[a_tma_origin: ImmutOrigin, b_tma_origin: ImmutOrigin, tiles_origin: MutOrigin, //](a_loader: TileLoaderTMA[a_tma_origin, a_type, a_layout, a_desc_layout, cta_group=BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group], b_loader: TileLoaderTMA[b_tma_origin, b_type, b_layout, b_desc_layout, cta_group=BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].cta_group], tiles: InputProducerStage[tiles_origin, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].TilePayload, BlackwellMatmulSM100Kernel[a_type, b_type, c_type, a_layout, b_layout, c_layout, a_desc_layout, b_desc_layout, c_desc_layout, transpose_b, config, cluster_shape, elementwise_compute_lambda_fn, register_based_epilogue, pdl_level, max_profiled_tiles_per_SM].SmemType.num_group_pipeline_stages, Int.__init__[Int](config.k_group_size)], iter_idx: UInt32, work_m_coord: UInt, work_n_coord: UInt, peer_cta_coord: Tuple[UInt, UInt, UInt], elect_one_cta: Bool)

Load k_group_size A and B tiles using TMA.

Orchestrates the tile loading operation including:

  • expect_bytes signaling
  • k-group iteration
  • Peer CTA slicing for 2-SM MMA

Args:

  • a_loader (TileLoaderTMA): TileLoaderTMA for A matrix.
  • b_loader (TileLoaderTMA): TileLoaderTMA for B matrix.
  • tiles (InputProducerStage): InputProducerStage context with encapsulated tile access.
  • iter_idx (UInt32): K iteration index (base index).
  • work_m_coord (UInt): M coordinate of the output tile.
  • work_n_coord (UInt): N coordinate of the output tile.
  • peer_cta_coord (Tuple): Peer CTA coordinates (rank_n, rank_m, peer_m_rank).
  • elect_one_cta (Bool): True if this CTA should call expect_bytes.

run

static run(a_tma_op: TMATensorTile[a_type, a_layout, a_desc_layout], b_tma_op: TMATensorTile[b_type, b_layout, b_desc_layout], c_tma_op: TMATensorTile[c_type, c_layout, c_desc_layout], cluster_dim: StaticTuple[Int32, 3], mnk: StaticTuple[UInt32, 3], workspace: Span[UInt64, MutAnyOrigin])

Main kernel entry point for SM100 matrix multiplication.

run_splitk

static run_splitk[reduction_layout: Layout](a_tma_op: TMATensorTile[a_type, a_layout, a_desc_layout], b_tma_op: TMATensorTile[b_type, b_layout, b_desc_layout], c_tma_op: TMATensorTile[c_type, c_layout, c_desc_layout], reduction_tensor: LayoutTensor[MatmulConfig[a_type, b_type, c_type, transpose_b].accum_type, reduction_layout, MutAnyOrigin], lock_ptr: LegacyUnsafePointer[UInt8], cluster_dim: StaticTuple[Int32, 3], mnk: StaticTuple[UInt32, 3], workspace: Span[UInt64, MutAnyOrigin])

Split-K kernel entry point for better parallelism on small problems.

Split-K divides the K dimension across multiple CTAs, with each CTA computing a partial result that is then reduced.

Args:

  • a_tma_op (TMATensorTile): TMA descriptor for matrix A.
  • b_tma_op (TMATensorTile): TMA descriptor for matrix B.
  • c_tma_op (TMATensorTile): TMA descriptor for matrix C.
  • reduction_tensor (LayoutTensor): Workspace for partial results from each split.
  • lock_ptr (LegacyUnsafePointer): Synchronization locks for reduction coordination.
  • cluster_dim (StaticTuple): Cluster dimensions.
  • mnk (StaticTuple): Problem dimensions (M, N, K).
  • workspace (Span): Workspace buffer for profiling/scheduling.

Was this page helpful?