Skip to main content

Mojo struct

B200MatmulSmem

struct B200MatmulSmem[a_type: DType, b_type: DType, c_type: DType, transpose_b: Bool, *, config: MatmulConfig[a_type, b_type, c_type, transpose_b]]

Shared memory layout for B200 SM100 matrix multiplication kernel.

This struct manages the shared memory allocation for:

  • Input tiles (A and B matrices) with multi-stage pipelining
  • Output tile (C matrix) for accumulation
  • Synchronization barriers for producer-consumer coordination
  • CLC (Cluster Launch Control) barriers and response storage
  • TMEM (Tensor Memory) address and deallocation barrier

The memory is organized to support asynchronous TMA loads and efficient bank-conflict-free access patterns for tensor core operations.

Type aliases are provided for tile types (ATile, BTile, CTile) to enable cleaner function signatures without verbose LayoutTensor declarations.

Fields

  • a_tiles_storage (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ATileArray.StorageType):
  • b_tiles_storage (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BTileArray.StorageType):
  • c_tiles_storage (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].CTileArray.StorageType):
  • input_barriers_storage (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].InputBarriers.StorageType):
  • accum_barriers_storage (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].AccumBarriers.StorageType):
  • clc_full_storage (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcBarriers.StorageType):
  • clc_empty_storage (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcBarriers.StorageType):
  • clc_throttle_storage (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcThrottleBarriers.StorageType):
  • clc_response_storage (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcResponse.StorageType):
  • tmem_dealloc_storage (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].TmemDealloc.StorageType):
  • tmem_addr_storage (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].TmemAddr.StorageType):

Implemented traits

AnyType, ImplicitlyDestructible

comptime members

__del__is_trivial

comptime __del__is_trivial = True

a_smem_layout

comptime a_smem_layout = tile_layout_k_major[a_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BM, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BK, config.a_swizzle]()

AccumBarriers

comptime AccumBarriers = SMemArrayType[SharedMemBarrier, (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_accum_pipeline_stages * 2)]

ATileArray

comptime ATileArray = SMemTileArrayType[a_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].a_smem_layout, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_pipeline_stages, 128]

b_smem_layout

comptime b_smem_layout = tile_layout_k_major[b_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BN, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BK, config.b_swizzle]() if transpose_b else tile_layout_mn_major[b_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BN, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BK, config.b_swizzle]()

BK

comptime BK = config.block_tile_shape.__getitem__[3, DType.int64, Int](2)

BM

comptime BM = config.block_tile_shape.__getitem__[3, DType.int64, Int](0)

BN

comptime BN = config.block_tile_shape.__getitem__[3, DType.int64, Int](1)

BTileArray

comptime BTileArray = SMemTileArrayType[b_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].b_smem_layout, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_pipeline_stages, 128]

c_smem_layout

comptime c_smem_layout = Layout.row_major(B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].OutputM, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].OutputN)

ClcBarriers

comptime ClcBarriers = SMemArrayType[SharedMemBarrier, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_clc_pipeline_stages]

ClcResponse

comptime ClcResponse = SMemArrayType[UInt128, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_clc_pipeline_stages]

ClcThrottleBarriers

comptime ClcThrottleBarriers = SMemArrayType[SharedMemBarrier, (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_clc_pipeline_stages * 2)]

CTileArray

comptime CTileArray = SMemTileArrayType[c_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].c_smem_layout, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_output_stages, 128]

InputBarriers

comptime InputBarriers = SMemArrayType[SharedMemBarrier, (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_group_pipeline_stages * 2)]

num_accum_pipeline_stages

comptime num_accum_pipeline_stages = config.num_accum_pipeline_stages

num_clc_pipeline_stages

comptime num_clc_pipeline_stages = config.num_clc_pipeline_stages

num_group_pipeline_stages

comptime num_group_pipeline_stages = (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_pipeline_stages // Int.__init__[Int](config.k_group_size))

num_output_stages

comptime num_output_stages = Int(config)

num_pipeline_stages

comptime num_pipeline_stages = Int.__init__[Int](config.num_pipeline_stages)

OutputM

comptime OutputM = config.output_tile_shape.__getitem__[2, DType.int64, Int](0)

OutputN

comptime OutputN = config.output_tile_shape.__getitem__[2, DType.int64, Int](1)

TmemAddr

comptime TmemAddr = SMemArrayType[UInt32, 1]

TmemDealloc

comptime TmemDealloc = SMemArrayType[SharedMemBarrier, 1]

Methods

a_tiles

a_tiles(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ATileArray

Returns:

B200MatmulSmem

b_tiles

b_tiles(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BTileArray

Returns:

B200MatmulSmem

c_tiles

c_tiles(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].CTileArray

Returns:

B200MatmulSmem

input_barriers

input_barriers(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].InputBarriers

Returns:

B200MatmulSmem

accum_barriers

accum_barriers(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].AccumBarriers

Returns:

B200MatmulSmem

clc_full

clc_full(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcBarriers

Returns:

B200MatmulSmem

clc_empty

clc_empty(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcBarriers

Returns:

B200MatmulSmem

clc_throttle

clc_throttle(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcThrottleBarriers

Returns:

B200MatmulSmem

clc_response

clc_response(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcResponse

Returns:

B200MatmulSmem

tmem_dealloc

tmem_dealloc(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].TmemDealloc

Returns:

B200MatmulSmem

tmem_addr

tmem_addr(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].TmemAddr

Returns:

B200MatmulSmem

ab_pipeline_size

static ab_pipeline_size() -> Int

Total size of A+B tiles for all pipeline stages (in elements).

Returns:

Int

c_output_size

static c_output_size() -> Int

Size of C tiles for all output stages (in elements).

Returns:

Int

total_tile_size

static total_tile_size() -> Int

Total tile storage size (A+B+C) in elements.

Returns:

Int

Was this page helpful?