Mojo struct
B200MatmulSmem
struct B200MatmulSmem[a_type: DType, b_type: DType, c_type: DType, transpose_b: Bool, *, config: MatmulConfig[a_type, b_type, c_type, transpose_b]]
Shared memory layout for B200 SM100 matrix multiplication kernel.
This struct manages the shared memory allocation for:
- Input tiles (A and B matrices) with multi-stage pipelining
- Output tile (C matrix) for accumulation
- Synchronization barriers for producer-consumer coordination
- CLC (Cluster Launch Control) barriers and response storage
- TMEM (Tensor Memory) address and deallocation barrier
The memory is organized to support asynchronous TMA loads and efficient bank-conflict-free access patterns for tensor core operations.
Type aliases are provided for tile types (ATile, BTile, CTile) to enable cleaner function signatures without verbose LayoutTensor declarations.
Fields
- a_tiles_storage (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ATileArray.StorageType): - b_tiles_storage (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BTileArray.StorageType): - c_tiles_storage (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].CTileArray.StorageType): - input_barriers_storage (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].InputBarriers.StorageType): - accum_barriers_storage (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].AccumBarriers.StorageType): - clc_full_storage (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcBarriers.StorageType): - clc_empty_storage (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcBarriers.StorageType): - clc_throttle_storage (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcThrottleBarriers.StorageType): - clc_response_storage (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcResponse.StorageType): - tmem_dealloc_storage (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].TmemDealloc.StorageType): - tmem_addr_storage (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].TmemAddr.StorageType):
Implemented traits
AnyType,
ImplicitlyDestructible
comptime members
__del__is_trivial
comptime __del__is_trivial = True
a_smem_layout
comptime a_smem_layout = tile_layout_k_major[a_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BM, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BK, config.a_swizzle]()
AccumBarriers
comptime AccumBarriers = SMemArrayType[SharedMemBarrier, (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_accum_pipeline_stages * 2)]
ATileArray
comptime ATileArray = SMemTileArrayType[a_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].a_smem_layout, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_pipeline_stages, 128]
b_smem_layout
comptime b_smem_layout = tile_layout_k_major[b_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BN, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BK, config.b_swizzle]() if transpose_b else tile_layout_mn_major[b_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BN, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BK, config.b_swizzle]()
BK
comptime BK = config.block_tile_shape.__getitem__[3, DType.int64, Int](2)
BM
comptime BM = config.block_tile_shape.__getitem__[3, DType.int64, Int](0)
BN
comptime BN = config.block_tile_shape.__getitem__[3, DType.int64, Int](1)
BTileArray
comptime BTileArray = SMemTileArrayType[b_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].b_smem_layout, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_pipeline_stages, 128]
c_smem_layout
comptime c_smem_layout = Layout.row_major(B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].OutputM, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].OutputN)
ClcBarriers
comptime ClcBarriers = SMemArrayType[SharedMemBarrier, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_clc_pipeline_stages]
ClcResponse
comptime ClcResponse = SMemArrayType[UInt128, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_clc_pipeline_stages]
ClcThrottleBarriers
comptime ClcThrottleBarriers = SMemArrayType[SharedMemBarrier, (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_clc_pipeline_stages * 2)]
CTileArray
comptime CTileArray = SMemTileArrayType[c_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].c_smem_layout, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_output_stages, 128]
InputBarriers
comptime InputBarriers = SMemArrayType[SharedMemBarrier, (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_group_pipeline_stages * 2)]
num_accum_pipeline_stages
comptime num_accum_pipeline_stages = config.num_accum_pipeline_stages
num_clc_pipeline_stages
comptime num_clc_pipeline_stages = config.num_clc_pipeline_stages
num_group_pipeline_stages
comptime num_group_pipeline_stages = (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_pipeline_stages // Int.__init__[Int](config.k_group_size))
num_output_stages
comptime num_output_stages = Int(config)
num_pipeline_stages
comptime num_pipeline_stages = Int.__init__[Int](config.num_pipeline_stages)
OutputM
comptime OutputM = config.output_tile_shape.__getitem__[2, DType.int64, Int](0)
OutputN
comptime OutputN = config.output_tile_shape.__getitem__[2, DType.int64, Int](1)
TmemAddr
comptime TmemAddr = SMemArrayType[UInt32, 1]
TmemDealloc
comptime TmemDealloc = SMemArrayType[SharedMemBarrier, 1]
Methods
a_tiles
a_tiles(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ATileArray
Returns:
B200MatmulSmem
b_tiles
b_tiles(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BTileArray
Returns:
B200MatmulSmem
c_tiles
c_tiles(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].CTileArray
Returns:
B200MatmulSmem
input_barriers
input_barriers(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].InputBarriers
Returns:
B200MatmulSmem
accum_barriers
accum_barriers(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].AccumBarriers
Returns:
B200MatmulSmem
clc_full
clc_full(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcBarriers
Returns:
B200MatmulSmem
clc_empty
clc_empty(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcBarriers
Returns:
B200MatmulSmem
clc_throttle
clc_throttle(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcThrottleBarriers
Returns:
B200MatmulSmem
clc_response
clc_response(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ClcResponse
Returns:
B200MatmulSmem
tmem_dealloc
tmem_dealloc(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].TmemDealloc
Returns:
B200MatmulSmem
tmem_addr
tmem_addr(ref [3] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].TmemAddr
Returns:
B200MatmulSmem
ab_pipeline_size
static ab_pipeline_size() -> Int
Total size of A+B tiles for all pipeline stages (in elements).
Returns:
c_output_size
total_tile_size
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!