Mojo struct
B200MatmulSmem
struct B200MatmulSmem[a_type: DType, b_type: DType, c_type: DType, transpose_b: Bool, *, config: MatmulConfig[a_type, b_type, c_type, transpose_b]]
Shared memory layout for B200 SM100 matrix multiplication kernel.
This struct manages the shared memory allocation for:
- Input tiles (A and B matrices) with multi-stage pipelining
- Output tile (C matrix) for accumulation
- Synchronization barriers for producer-consumer coordination
- CLC (Cluster Launch Control) barriers and response storage
- TMEM (Tensor Memory) address and deallocation barrier
The memory is organized to support asynchronous TMA loads and efficient bank-conflict-free access patterns for tensor core operations.
Type aliases are provided for tile types (ATile, BTile, CTile) to enable cleaner function signatures.
Fields
- input_tiles (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].InputTiles): - output_tiles (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].OutputTiles): - pipelines (
B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].Pipelines):
Implemented traits
AnyType,
ImplicitlyDestructible
comptime members
__del__is_trivial
comptime __del__is_trivial = True
a_smem_layout
comptime a_smem_layout = B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].Layouts.a_smem_layout
ATileArray
comptime ATileArray = B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].InputTiles.ATileArray
b_smem_layout
comptime b_smem_layout = B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].Layouts.b_smem_layout
BK
comptime BK = config.block_tile_shape.__getitem__[Int](2)
BM
comptime BM = config.block_tile_shape.__getitem__[Int](0)
BN
comptime BN = config.block_tile_shape.__getitem__[Int](1)
BTileArray
comptime BTileArray = B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].InputTiles.BTileArray
c_smem_layout
comptime c_smem_layout = B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].Layouts.c_smem_layout
CTileArray
comptime CTileArray = B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].OutputTiles.CTileArray
InputTiles
comptime InputTiles = StandardTileStorage[a_type, b_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BM, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BK, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BN, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BK, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_pipeline_stages]
Layouts
comptime Layouts = SmemLayouts[a_type, b_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BM, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BN, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BK, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].OutputM, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].OutputN, config.a_swizzle, config.b_swizzle, transpose_b]
num_accum_pipeline_stages
comptime num_accum_pipeline_stages = config.num_accum_pipeline_stages
num_clc_pipeline_stages
comptime num_clc_pipeline_stages = config.num_clc_pipeline_stages
num_group_pipeline_stages
comptime num_group_pipeline_stages = (B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_pipeline_stages // config)
num_output_stages
comptime num_output_stages = config.num_output_stages
num_pipeline_stages
comptime num_pipeline_stages = config.num_pipeline_stages
OutputM
comptime OutputM = config.output_tile_shape.__getitem__[Int](0)
OutputN
comptime OutputN = config.output_tile_shape.__getitem__[Int](1)
OutputTiles
comptime OutputTiles = OutputTileStorage[c_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].OutputM, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].OutputN, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_output_stages]
Pipelines
comptime Pipelines = SmemPipelineBundle[B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_group_pipeline_stages, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_accum_pipeline_stages, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_clc_pipeline_stages, StandardTilePayload[a_type, b_type, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BM, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BK, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BN, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BK, B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].num_pipeline_stages]]
Methods
a_tiles
a_tiles(ref[AddressSpace._value._mlir_value] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].ATileArray
Returns:
B200MatmulSmem
b_tiles
b_tiles(ref[AddressSpace._value._mlir_value] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].BTileArray
Returns:
B200MatmulSmem
c_tiles
c_tiles(ref[AddressSpace._value._mlir_value] self) -> B200MatmulSmem[a_type, b_type, c_type, transpose_b, config=config].CTileArray
Returns:
B200MatmulSmem
ab_pipeline_size
static ab_pipeline_size() -> Int
Total size of A+B tiles for all pipeline stages (in elements).
Returns:
c_output_size
total_tile_size
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!