Skip to main content

Mojo struct

PagedKVCache

@register_passable(trivial) struct PagedKVCache[dtype_: DType, kv_params_: KVCacheStaticParams, page_size: Int, scale_dtype_: DType = DType.invalid, quantization_granularity: Int = 1]

The PagedKVCache is a wrapper around the KVCache blocks for a given layer. It is used to access the KVCache blocks for PagedAttention.

Note: This struct represents a 4D view of a 6D PagedKVCacheCollection tensor. The compile-time layout has UNKNOWN_VALUE for stride[0] because the actual stride depends on num_layers from the parent tensor, which is only known at runtime. This ensures offset calculations use the correct runtime strides rather than incorrect compile-time values.

Parameters

  • dtype_ (DType): The dtype of the kv-cache.
  • kv_params_ (KVCacheStaticParams): The kv-cache static parameters.
  • page_size (Int): The size of the page.
  • scale_dtype_ (DType): Dtype of the quantization scales (if quantization enabled).
  • quantization_granularity (Int): Block size used for quantization (e.g. 128).

Fields

  • blocks (PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].blocks_type):
  • cache_lengths (LayoutTensor[DType.uint32, Layout(IntTuple(-1)), ImmutAnyOrigin]):
  • lookup_table (LayoutTensor[DType.uint32, Layout.row_major[2](), ImmutAnyOrigin]):
  • max_seq_length (UInt32):
  • max_cache_length (UInt32):
  • scales (OptionalReg[LayoutTensor[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].scale_dtype, PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].scales_layout, MutAnyOrigin]]):

Implemented traits

AnyType, Copyable, DevicePassable, ImplicitlyCopyable, ImplicitlyDestructible, KVCacheT, Movable, TrivialRegisterType

comptime members

__copyinit__is_trivial

comptime __copyinit__is_trivial = True

__del__is_trivial

comptime __del__is_trivial = True

__moveinit__is_trivial

comptime __moveinit__is_trivial = True

blocks_layout

comptime blocks_layout = Layout(PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].blocks_shape, PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].blocks_strides)

blocks_shape

comptime blocks_shape = IntTuple(-1, page_size, Int.__init__[UInt](PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].kv_params.num_heads), Int.__init__[UInt](PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].kv_params.head_size))

blocks_strides

comptime blocks_strides = IntTuple(-1, (Int.__init__[UInt](PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].kv_params.num_heads) * Int.__init__[UInt](PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].kv_params.head_size)), Int.__init__[UInt](PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].kv_params.head_size), 1)

blocks_type

comptime blocks_type = LayoutTensor[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].dtype, PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].blocks_layout, MutAnyOrigin]

device_type

comptime device_type = PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity]

dtype

comptime dtype = dtype_

head_dim_granularity

comptime head_dim_granularity = ceildiv(Int.__init__[UInt](PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].kv_params.head_size), quantization_granularity)

kv_params

comptime kv_params = kv_params_

page_size_

comptime page_size_ = page_size

quantization_enabled

comptime quantization_enabled = (scale_dtype_ != DType.invalid)

scale_dtype

comptime scale_dtype = scale_dtype_

scales_block_type

comptime scales_block_type = LayoutTensor[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].scale_dtype, PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].scales_layout, MutAnyOrigin]

scales_layout

comptime scales_layout = Layout.row_major(PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].scales_shape)

scales_shape

comptime scales_shape = IntTuple(-1, page_size, Int.__init__[UInt](PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].kv_params.num_heads), PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].head_dim_granularity)

Methods

__init__

__init__(blocks: LayoutTensor[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].dtype, PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].blocks_layout, MutAnyOrigin], cache_lengths: LayoutTensor[DType.uint32, Layout(IntTuple(-1)), ImmutAnyOrigin], lookup_table: LayoutTensor[DType.uint32, Layout.row_major[2](), ImmutAnyOrigin], max_seq_length: UInt32, max_cache_length: UInt32, scales: OptionalReg[LayoutTensor[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].scale_dtype, PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].scales_layout, MutAnyOrigin]] = None) -> Self

get_type_name

static get_type_name() -> String

Returns:

String

max_tile_size

static max_tile_size() -> Int

Returns the maximum tile size for the KVCache.

Returns:

Int

cache_lengths_nd

cache_lengths_nd(self) -> LayoutTensor[DType.uint32, Layout(IntTuple(-1)), ImmutAnyOrigin]

Returns:

LayoutTensor

cache_length

cache_length(self, batch_idx: Int) -> Int

Returns the length of the cache for a given batch index.

Returns:

Int

row_idx

row_idx(self, batch_idx: UInt32, tok_idx: UInt32) -> UInt32

Returns the row idx when viewing the memory as a matrix.

Returns:

UInt32

create_tma_tile

create_tma_tile[swizzle_mode: TensorMapSwizzle, *, BN: Int, BK: Int = padded_depth[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].dtype, swizzle_mode, Int.__init__[UInt](PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].kv_params.head_size)]()](self, ctx: DeviceContext) -> TMATensorTile[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].dtype, _split_last_layout[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].dtype](IndexList[3, DType.int64](BN, 1, BK, Tuple[]()), swizzle_mode, True), _ragged_desc_layout[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].dtype](IndexList[3, DType.int64](BN, 1, BK, Tuple[]()), swizzle_mode)]

Creates a TMA tile for this KV cache.

Returns:

TMATensorTile

create_ragged_tma_tile

create_ragged_tma_tile[swizzle_mode: TensorMapSwizzle, *, BN: Int, BK: Int = padded_depth[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].dtype, swizzle_mode, Int.__init__[UInt](PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].kv_params.head_size)]()](self, ctx: DeviceContext, out tma: RaggedTMA3DTile[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].dtype, swizzle_mode, BN, BK])

Returns:

RaggedTMA3DTile

load

load[width: Int, output_dtype: DType = PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].dtype](self, bs: Int, head_idx: Int, tok_idx: Int, head_dim_idx: Int) -> SIMD[output_dtype, width]

Loads an element from the given index.

Returns:

SIMD

store

store(self, bs: Int, head_idx: Int, tok_idx: Int, head_dim_idx: Int, val: SIMD[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].dtype, size])

Stores an element at the given index.

load_scale

load_scale[width: Int](self, bs: Int, head_idx: Int, tok_idx: Int, head_dim_idx: Int) -> SIMD[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].scale_dtype, width]

Loads a quantization scale from the given index.

Returns:

SIMD

store_scale

store_scale(self, bs: Int, head_idx: Int, tok_idx: Int, head_dim_idx: Int, scales: SIMD[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].scale_dtype, size])

Stores the quantization scales at the given index.

load_quantized

load_quantized[width: Int](self, bs: Int, head_idx: Int, tok_idx: Int, head_dim_idx: Int) -> SIMD[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].dtype, width]

Loads a quantized element from the given index.

Returns:

SIMD

empty_cache

empty_cache(self) -> Bool

Returns true if the cache_lengths for all requests is 0, false otherwise.

Returns:

Bool

max_prompt_length

max_prompt_length(self) -> UInt32

Returns the maximum sequence length across all batches of the current request.

Returns:

UInt32

max_context_length

max_context_length(self) -> UInt32

Returns the maximum cache length used across all batches of the current request.

Returns:

UInt32

block_paged_ptr

block_paged_ptr[tile_size: Int](self, batch_idx: Int, start_tok_idx: Int, head_idx: Int, head_dim_idx: Int = 0) -> UnsafePointer[Scalar[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].dtype], MutAnyOrigin]

Returns:

UnsafePointer

scales_block_paged_ptr

scales_block_paged_ptr(self, batch_idx: Int, start_tok_idx: Int, head_idx: Int, head_dim_idx: Int = 0) -> UnsafePointer[Scalar[PagedKVCache[dtype_, kv_params_, page_size, scale_dtype_, quantization_granularity].scale_dtype], MutAnyOrigin]

Returns a pointer to the scales block at the requested indices.

Returns:

UnsafePointer

Was this page helpful?