max CLI
The max CLI tool accelerates GenAI tasks by creating optimized inference
pipelines with OpenAI-compatible
endpoints. It
supports models from Hugging Face
and MAX Graph optimized versions of models
like Llama 3.1, Mistral, and Replit Code.
Generate text or start an OpenAI-compatible endpoint with a single command using
the max CLI tool.
Install
Create a Python project to install our APIs and the max CLI.
- pixi
- uv
- pip
- conda
- If you don't have it, install
pixi:curl -fsSL https://pixi.sh/install.sh | shThen restart your terminal for the changes to take effect.
- Create a project:
pixi init example-project \ -c https://conda.modular.com/max-nightly/ -c conda-forge \ && cd example-project - Install the
modularPython package:- Nightly
- Stable
pixi add modularpixi add "modular=25.5" - Start the virtual environment:
pixi shell
- If you don't have it, install
uv:curl -LsSf https://astral.sh/uv/install.sh | shThen restart your terminal to make
uvaccessible. - Create a project:
uv init example-project && cd example-project - Create and start a virtual environment:
uv venv && source .venv/bin/activate - Install the
modularPython package:- Nightly
- Stable
uv pip install modular \ --index-url https://dl.modular.com/public/nightly/python/simple/ \ --prerelease allowuv pip install modular \ --extra-index-url https://modular.gateway.scarf.sh/simple/
- Create a project folder:
mkdir example-project && cd example-project - Create and activate a virtual environment:
python3 -m venv .venv/example-project \ && source .venv/example-project/bin/activate - Install the
modularPython package:- Nightly
- Stable
pip install --pre modular \ --index-url https://dl.modular.com/public/nightly/python/simple/pip install modular \ --extra-index-url https://modular.gateway.scarf.sh/simple/
- If you don't have it, install conda. A common choice is with
brew:brew install miniconda - Initialize
condafor shell interaction:conda initIf you're on a Mac, instead use:
conda init zshThen restart your terminal for the changes to take effect.
- Create a project:
conda create -n example-project - Start the virtual environment:
conda activate example-project - Install the
modularconda package:- Nightly
- Stable
conda install -c conda-forge -c https://conda.modular.com/max-nightly/ modularconda install -c conda-forge -c https://conda.modular.com/max/ modular
When you install the modular package, you'll get access to the max CLI tool
automatically. You can check your version like this:
max --versionRun your first model
Now that you have max installed, you can run your first model:
max generate --model modularai/Llama-3.1-8B-Instruct-GGUF \
--prompt "Generate a story about a robot"Commands
max provides the following commands.
You can also print the available commands and documentation with --help.
For example:
max --helpmax serve --helpencode
Converts input text into embeddings for semantic search, text similarity, and NLP applications.
max encode [OPTIONS]Example
Basic embedding generation:
max encode \
--model sentence-transformers/all-MiniLM-L6-v2 \
--prompt "Convert this text into embeddings"generate
Performs text generation based on a provided prompt.
max generate [OPTIONS]Examples
Text generation:
max generate \
--model modularai/Llama-3.1-8B-Instruct-GGUF \
--max-length 1024 \
--max-new-tokens 100 \
--prompt "Generate a story about a robot"Text generation with controls:
max generate \
--model modularai/Llama-3.1-8B-Instruct-GGUF \
--max-length 1024 \
--max-new-tokens 500 \
--top-k 40 \
--temperature 0.7 \
--seed 42 \
--quantization-encoding q4_k \
--cache-strategy paged \
--prompt "Explain quantum computing"Process an image using a vision-language model given a URL to an image:
Llama 3.2 Vision
Llama Vision models take prompts with <|image|> and <|begin_of_text|> tokens.
For more information, see the Llama 3.2 Vision
documentation.
max generate \
--model meta-llama/Llama-3.2-11B-Vision-Instruct \
--prompt "<|image|><|begin_of_text|>What is in this image?" \
--image_url https://upload.wikimedia.org/wikipedia/commons/5/53/Almendro_en_flor_Sierras_de_Tejeda%2C_Almijara_y_Alhama.jpg \
--max-new-tokens 100 \
--max-batch-size 1 \
--max-length 108172Pixtral
Pixtral models take prompts with [IMG] tokens. For more information, see the
Pixtral
documentation.
max generate \
--model mistral-community/pixtral-12b \
--max-length 6491 \
--image_url https://upload.wikimedia.org/wikipedia/commons/5/53/Almendro_en_flor_Sierras_de_Tejeda%2C_Almijara_y_Alhama.jpg \
--prompt "<s>[INST]Describe the images.\n[IMG][/INST]"For more information on how to use the generate command with vision models, see
Generate image descriptions with Llama 3.2
Vision.
list
Displays available model architectures and configurations, including:
- Hugging Face model repositories
- Supported encoding types
- Available cache strategies
max listserve
Launches an OpenAI-compatible REST API server for production deployments. For more detail, see the Serve API docs.
max serve [OPTIONS]Examples
CPU serving:
max serve \
--model modularai/Llama-3.1-8B-Instruct-GGUFOptimized GPU serving:
max serve \
--model modularai/Llama-3.1-8B-Instruct-GGUF \
--devices gpu \
--quantization-encoding bfloat16 \
--max-batch-size 4 \
--cache-strategy pagedProduction setup:
max serve \
--model modularai/Llama-3.1-8B-Instruct-GGUF \
--devices gpu:0,1 \
--max-batch-size 8 \
--device-memory-utilization 0.9Custom architectures
The max CLI supports loading custom model architectures through the
--custom-architectures flag. This allows you to extend MAX's capabilities with
your own model implementations:
max serve \
--model modularai/Llama-3.1-8B-Instruct-GGUF \
--custom-architectures path/to/module1:module1 \
--custom-architectures path/to/module2:module2warm-cache
Preloads and compiles the model to optimize initialization time by:
- Pre-compiling models before deployment
- Warming up the Hugging Face cache
This command is useful to run before serving a model.
max warm-cache [OPTIONS]Example:
Basic cache warming:
max warm-cache \
--model modularai/Llama-3.1-8B-Instruct-GGUFModel configuration
Core settings for model loading and execution.
| Option | Description | Default | Values |
|---|---|---|---|
--custom-architectures | Load custom pipeline architectures | Module path format: folder/path/to/import:my_module | |
--model TEXT | Model ID or local path | Hugging Face repo ID (e.g. mistralai/Mistral-7B-v0.1) or a local path | |
--quantization-encoding | Weight encoding type | float32|bfloat16|q4_k|q4_0|q6_k|gptq | |
--weight-path PATH | Custom model weights path | Valid file path (supports multiple paths via repeated flags) |
Device configuration
Controls hardware placement and memory usage.
| Option | Description | Default | Values |
|---|---|---|---|
--devices | Target devices | cpu|gpu|gpu:{id} (e.g. gpu:0,1) | |
--device-specs | Specific device configuration | CPU | DeviceSpec format (e.g. DeviceSpec(id=-1, device_type='cpu')) |
--device-memory-utilization | Device memory fraction | 0.9 | Float between 0.0 and 1.0 |
Performance tuning
Optimization settings for batch processing, caching, and sequence handling.
| Option | Description | Default | Values |
|---|---|---|---|
--cache-strategy | Cache strategy | naive|continuous | |
--kv-cache-page-size | Token count per KVCache page | 128 | Positive integer |
--max-batch-size | Maximum cache size per batch | 1 | Positive integer |
--max-ce-batch-size | Maximum context encoding batch size | 32 | Positive integer |
--max-length | Maximum input sequence length | The Hugging Face model's default max length is used. | Positive integer (must be less than model's max config) |
--max-new-tokens | Maximum tokens to generate | -1 | Integer (-1 for model max) |
Model state control
Options for saving or loading model states and handling external code
| Option | Description | Default | Values |
|---|---|---|---|
--force-download | Force re-download cached files | false | true|false |
--trust-remote-code | Allow custom Hugging Face code | false | true|false |
Generation parameters
Controls for generation behavior.
| Option | Description | Default | Values |
|---|---|---|---|
--enable-constrained-decoding | Enable constrained generation | false | true|false |
--enable-echo | Enable model echo | false | true|false |
--image_url | URLs of images to include with prompt. Ignored if model doesn't support image inputs | [] | List of valid URLs |
--rope-type | RoPE type for GGUF weights | none|normal|neox | |
--seed | Random seed for generation reproducibility | Integer value | |
--temperature | Sampling temperature for generation randomness | 1.0 | Float value (0.0 to 2.0) |
--top-k | Limit sampling to top K tokens | 255 | Positive integer (1 for greedy sampling) |
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!